IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i24p4879-d1294603.html
   My bibliography  Save this article

Mathematical Modeling of the Hydrodynamic Instability and Chemical Inhibition of Detonation Waves in a Syngas–Air Mixture

Author

Listed:
  • Valeriy Nikitin

    (Moscow Center for Fundamental and Applied Mathematics, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119992, Russia
    National Research Centre Kurchatov Institute, Federal Science Center Scientific Research Institute for System Analysis of Russian Academy of Sciences, Moscow 117218, Russia)

  • Elena Mikhalchenko

    (Moscow Center for Fundamental and Applied Mathematics, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119992, Russia
    National Research Centre Kurchatov Institute, Federal Science Center Scientific Research Institute for System Analysis of Russian Academy of Sciences, Moscow 117218, Russia)

  • Lyuben Stamov

    (Moscow Center for Fundamental and Applied Mathematics, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119992, Russia
    National Research Centre Kurchatov Institute, Federal Science Center Scientific Research Institute for System Analysis of Russian Academy of Sciences, Moscow 117218, Russia)

  • Nickolay Smirnov

    (Moscow Center for Fundamental and Applied Mathematics, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119992, Russia
    National Research Centre Kurchatov Institute, Federal Science Center Scientific Research Institute for System Analysis of Russian Academy of Sciences, Moscow 117218, Russia)

  • Vilen Azatyan

    (National Research Centre Kurchatov Institute, Federal Science Center Scientific Research Institute for System Analysis of Russian Academy of Sciences, Moscow 117218, Russia)

Abstract

This paper presents the results of the two-dimensional modeling of the hydrodynamic instability of a detonation wave, which results in the formation of an oscillating cellular structure on the wave front. This cellular structure of the wave, unstable due to its origin, demonstrates the constant statistically averaged characteristics of the cell size. The suppression of detonation propagation in synthesis gas mixtures with air using a combustible inhibitor is studied numerically. Contrary to the majority of inhibitors being either inert substances, which do not take part in the chemical reaction, or take part in chemical reaction but do not contribute to energy release, the suggested inhibitor is also a fuel, which enters into an exothermic reaction with oxygen. The unsaturated hydrocarbon propylene additive is used as an inhibitor. The dependence of the effect of the inhibitor content on the mitigation of detonation for various conditions of detonation initiation is researched. The results make it possible to determine a critical percentage of inhibitor which prevents the occurrence of detonation and the critical percentage of inhibitor which destroys a developed detonation wave.

Suggested Citation

  • Valeriy Nikitin & Elena Mikhalchenko & Lyuben Stamov & Nickolay Smirnov & Vilen Azatyan, 2023. "Mathematical Modeling of the Hydrodynamic Instability and Chemical Inhibition of Detonation Waves in a Syngas–Air Mixture," Mathematics, MDPI, vol. 11(24), pages 1-15, December.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:24:p:4879-:d:1294603
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/24/4879/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/24/4879/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fiore, M. & Magi, V. & Viggiano, A., 2020. "Internal combustion engines powered by syngas: A review," Applied Energy, Elsevier, vol. 276(C).
    2. Jiang, Haipeng & Bi, Mingshu & Huang, Lei & Zhou, Yonghao & Gao, Wei, 2022. "Suppression mechanism of ultrafine water mist containing phosphorus compounds in methane/coal dust explosions," Energy, Elsevier, vol. 239(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Congliang & Zhang, Qi, 2022. "Chain explosion behaviors induced by discontinuous methane/air distribution," Energy, Elsevier, vol. 252(C).
    2. Victor Arruda Ferraz de Campos & Luís Carmo-Calado & Roberta Mota-Panizio & Vitor Matos & Valter Bruno Silva & Paulo S. Brito & Daniela F. L. Eusébio & Celso Eduardo Tuna & José Luz Silveira, 2023. "A Waste-to-Energy Technical Approach: Syngas–Biodiesel Blend for Power Generation," Energies, MDPI, vol. 16(21), pages 1-18, October.
    3. Luigi De Simio & Sabato Iannaccone & Massimo Masi & Paolo Gobbato, 2022. "Experimental Study and Optimisation of a Non-Conventional Ignition System for Reciprocating Engines Operation with Hydrogen–Methane Blends, Syngas, and Biogas," Energies, MDPI, vol. 15(21), pages 1-21, November.
    4. José Manuel Andújar & Francisca Segura & Jesús Rey & Francisco José Vivas, 2022. "Batteries and Hydrogen Storage: Technical Analysis and Commercial Revision to Select the Best Option," Energies, MDPI, vol. 15(17), pages 1-32, August.
    5. Jeong, Yong-Seong & Kim, Jong-Woo & Seo, Myung-Won & Mun, Tae-Young & Kim, Joo-Sik, 2021. "Characteristics of two-stage air gasification of polystyrene with active carbon as a tar removal agent," Energy, Elsevier, vol. 219(C).
    6. Giuntini, Lorenzo & Lamioni, Rachele & Linari, Luca & Saccomano, Pietro & Mainardi, Davide & Tognotti, Leonardo & Galletti, Chiara, 2022. "Decarbonization of a tissue paper plant: Advanced numerical simulations to assess the replacement of fossil fuels with a biomass-derived syngas," Renewable Energy, Elsevier, vol. 198(C), pages 884-893.
    7. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    8. Zhong, Shenghui & Xu, Shijie & Bai, Xue-Song & Peng, Zhijun & Zhang, Fan, 2021. "Large eddy simulation of n-heptane/syngas pilot ignition spray combustion: Ignition process, liftoff evolution and pollutant emissions," Energy, Elsevier, vol. 233(C).
    9. Cao, Jiaojiao & Wu, Jiansong & Zhao, Yimeng & Cai, Jitao & Bai, Yiping & Pang, Lei, 2023. "Suppression effects of energy-absorbing materials on natural gas explosion in utility tunnels," Energy, Elsevier, vol. 281(C).
    10. Andrej Chríbik & Marián Polóni & Andrej Majkút & Ladislav Écsi & Ladislav Gulan, 2023. "High-Energy Synthesis Gases from Waste as Energy Source for Internal Combustion Engine," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    11. Wang, Yong & Ma, Yinjie & Xie, Deyi & Yu, Zhenhuan & E, Jiaqiang, 2021. "Numerical study on the influence of gasoline properties and thermodynamic conditions on premixed laminar flame velocity at multiple conditions," Energy, Elsevier, vol. 233(C).
    12. Andrés David Morales Rojas & Sebastián Heredia Quintana & Iván Darío Bedoya Caro, 2024. "Experimental Study of a Homogeneous Charge Compression Ignition Engine Using Hydrogen at High-Altitude Conditions," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
    13. Wang, Cai-Ping & Deng, Yin & Xiao, Yang & Deng, Jun & Shu, Chi-Min & Jiang, Zhi-Gang, 2022. "Gas-heat characteristics and oxidation kinetics of coal spontaneous combustion in heating and decaying processes," Energy, Elsevier, vol. 250(C).
    14. Zhao, Wenbin & Mi, Shijie & Wu, Haoqing & Zhang, Yaoyuan & Zhang, Qiankun & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2022. "Towards a comprehensive understanding of mode transition between biodiesel-biobutanol dual-fuel ICCI low temperature combustion and conventional CI combustion – Part Ⅰ: Characteristics from medium to ," Energy, Elsevier, vol. 246(C).
    15. Moradi, Ramin & Cioccolanti, Luca & Del Zotto, Luca & Renzi, Massimiliano, 2023. "Comparative sensitivity analysis of micro-scale gas turbine and supercritical CO2 systems with bottoming organic Rankine cycles fed by the biomass gasification for decentralized trigeneration," Energy, Elsevier, vol. 266(C).
    16. Dai, Huaming & Yin, Hepeng & Zhai, Cheng, 2022. "Experimental investigation on the inhibition of coal dust deflagration by the composite inhibitor of floating bead and melamine cyanurate," Energy, Elsevier, vol. 261(PA).
    17. Quintero-Coronel, Daniel A. & Salazar, Adalberto & Pupo-Roncallo, Oscar R. & Bula, Antonio & Corredor, Lesme & Amador, German & Gonzalez-Quiroga, Arturo, 2023. "Assessment of the interchangeability of coal-biomass syngas with natural gas for atmospheric burners and high-pressure combustion applications," Energy, Elsevier, vol. 276(C).
    18. Zhao, Qi & Li, Yi & Chen, Xianfeng, 2022. "Fire extinguishing and explosion suppression characteristics of explosion suppression system with N2/APP after methane/coal dust explosion," Energy, Elsevier, vol. 257(C).
    19. Wang, Tao & Liang, He & Luo, Zhenmin & Yu, Jianliang & Cheng, Fangming & Zhao, Jingyu & Su, Bin & Li, Ruikang & Wang, Xuqing & Feng, Zairong & Deng, Jun, 2023. "Thermal suppression effects of diluent gas on the deflagration behavior of H2–air mixtures," Energy, Elsevier, vol. 272(C).
    20. Vargas-Salgado, Carlos & Águila-León, Jesús & Alfonso-Solar, David & Malmquist, Anders, 2022. "Simulations and experimental study to compare the behavior of a genset running on gasoline or syngas for small scale power generation," Energy, Elsevier, vol. 244(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:24:p:4879-:d:1294603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.