IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i11p6902-d832199.html
   My bibliography  Save this article

A Risk Evaluation Method of Coastal Oil Depots for Heavy Rainfall Vulnerability Assessment

Author

Listed:
  • Jian Guo

    (National-Local Joint Engineering Laboratory of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China)

  • Jun Wang

    (School of Shipping and Maritime, Zhejiang Ocean University, Zhoushan 316022, China)

  • Baikang Zhu

    (National-Local Joint Engineering Laboratory of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China)

  • Bingyuan Hong

    (National-Local Joint Engineering Laboratory of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China)

  • Cuicui Li

    (National-Local Joint Engineering Laboratory of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China)

  • Jianhui He

    (ENN (Zhoushan) LNG Co., Ltd., Zhoushan 316022, China)

Abstract

Oil depots in the coastal areas of China are prone to disasters caused by heavy rain due to the monsoon climate. Studies focusing on heavy rainfall vulnerability in coastal oil depots are limited. Therefore, we evaluated the safety of oil depots based on four factors in this study: personnel, equipment and facility, environment, and resilience. Complex networks, analytic hierarchy processes, and information entropy theory were used to establish an evaluation index system including four first-level indicators, nine second-level indicators, and 40 third-level indicators. Scores of 40 evaluation indicators were taken as the input, a vulnerability level of oil depots affected by heavy rain was gained as the output, and results were presented visually (different warning levels distinguished by color) to help oil depot enterprises improve their safety performance under extreme weather conditions.

Suggested Citation

  • Jian Guo & Jun Wang & Baikang Zhu & Bingyuan Hong & Cuicui Li & Jianhui He, 2022. "A Risk Evaluation Method of Coastal Oil Depots for Heavy Rainfall Vulnerability Assessment," Sustainability, MDPI, vol. 14(11), pages 1-12, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6902-:d:832199
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/11/6902/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/11/6902/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Renuka Nagpal & Deepti Mehrotra & Pradeep Kr. Bhatia, 2016. "Usability evaluation of website using combined weighted method: fuzzy AHP and entropy approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(4), pages 408-417, December.
    2. Wang, WuChang & Zhang, Yi & Li, YuXing & Hu, Qihui & Liu, Chengsong & Liu, Cuiwei, 2022. "Vulnerability analysis method based on risk assessment for gas transmission capabilities of natural gas pipeline networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    3. Hu, Jinqiu & Khan, Faisal & Zhang, Laibin, 2021. "Dynamic resilience assessment of the Marine LNG offloading system," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    4. Xie, Shuyi & Dong, Shaohua & Chen, Yinuo & Peng, Yujie & Li, Xincai, 2021. "A novel risk evaluation method for fire and explosion accidents in oil depots using bow-tie analysis and risk matrix analysis method based on cloud model theory," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Ding, Long & Khan, Faisal & Ji, Jie, 2022. "A novel vulnerability model considering synergistic effect of fire and overpressure in chemical processing facilities," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Ana Cruz & Elisabeth Krausmann, 2013. "Vulnerability of the oil and gas sector to climate change and extreme weather events," Climatic Change, Springer, vol. 121(1), pages 41-53, November.
    7. Chen, Chao & Khakzad, Nima & Reniers, Genserik, 2020. "Dynamic vulnerability assessment of process plants with respect to vapor cloud explosions," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    8. Ghorbani, Modjtaba & Li, Xueliang & Zangi, Samaneh & Amraei, Najaf, 2021. "On the eigenvalue and energy of extended adjacency matrix," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    9. Khakzad, Nima & Reniers, Genserik & Abbassi, Rouzbeh & Khan, Faisal, 2016. "Vulnerability analysis of process plants subject to domino effects," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 127-136.
    10. Rossi, Lorenzo & Casson Moreno, Valeria & Landucci, Gabriele, 2022. "Vulnerability assessment of process pipelines affected by flood events," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bingang Guo & Jianfeng Gao & Bin Hao & Bingjian Ai & Bingyuan Hong & Xinsheng Jiang, 2022. "Experimental and Numerical Study on the Explosion Dynamics of the Non-Uniform Liquefied Petroleum Gas and Air Mixture in a Channel with Mixed Obstacles," Energies, MDPI, vol. 15(21), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marroni, Giulia & Casini, Leonardo & Bartolucci, Andrea & Kuipers, Sanneke & Casson Moreno, Valeria & Landucci, Gabriele, 2024. "Development of fragility models for process equipment affected by physical security attacks," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Li, Xiaofeng & Chen, Guohua & Amyotte, Paul & Khan, Faisal & Alauddin, Mohammad, 2023. "Vulnerability assessment of storage tanks exposed to simultaneous fire and explosion hazards," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Misuri, Alessio & Ricci, Federica & Sorichetti, Riccardo & Cozzani, Valerio, 2023. "The Effect of Safety Barrier Degradation on the Severity of Primary Natech Scenarios," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Li, Yuntao & Wang, Yumeng & Lai, Yuying & Shuai, Jian & Zhang, Laibin, 2023. "Monte Carlo-based quantitative risk assessment of parking areas for vehicles carrying hazardous chemicals," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    5. Amin, Md. Tanjin & Scarponi, Giordano Emrys & Cozzani, Valerio & Khan, Faisal, 2024. "Improved pool fire-initiated domino effect assessment in atmospheric tank farms using structural response," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    6. Chen, Chao & Reniers, Genserik & Khakzad, Nima, 2021. "A dynamic multi-agent approach for modeling the evolution of multi-hazard accident scenarios in chemical plants," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Ricci, Federica & Yang, Ming & Reniers, Genserik & Cozzani, Valerio, 2024. "Emergency response in cascading scenarios triggered by natural events," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    8. Laobing Zhang & Gabriele Landucci & Genserik Reniers & Nima Khakzad & Jianfeng Zhou, 2018. "DAMS: A Model to Assess Domino Effects by Using Agentā€Based Modeling and Simulation," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1585-1600, August.
    9. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
    10. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    11. Riza Demirer & Rangan Gupta & Jacobus Nel & Christian Pierdzioch, 2020. "Effect of Rare Disaster Risks on Crude Oil: Evidence from El Nino from Over 140 Years of Data," Working Papers 2020104, University of Pretoria, Department of Economics.
    12. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Casualty analysis methodology and taxonomy for FPSO accident analysis," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    13. AbdulHafeez Muhammad & Ansar Siddique & Quadri Noorulhasan Naveed & Uzma Khaliq & Ali M. Aseere & Mohd Abul Hasan & Mohamed Rafik N. Qureshi & Basit Shahzad, 2021. "Evaluating Usability of Academic Websites through a Fuzzy Analytical Hierarchical Process," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    14. Talha Ahmed & Yasir Mahmood & Nita Yodo & Ying Huang, 2024. "Weather-Related Combined Effect on Failure Propagation and Maintenance Procedures towards Sustainable Gas Pipeline Infrastructure," Sustainability, MDPI, vol. 16(13), pages 1-31, July.
    15. Gaogeng Zhu & Guoming Chen & Jingyu Zhu & Xiangkun Meng & Xinhong Li, 2022. "Modeling the Evolution of Major Storm-Disaster-Induced Accidents in the Offshore Oil and Gas Industry," IJERPH, MDPI, vol. 19(12), pages 1-27, June.
    16. Li, Weijun & Sun, Qiqi & Zhang, Jiwang & Zhang, Laibin, 2024. "Quantitative risk assessment of industrial hot work using Adaptive Bow Tie and Petri Nets," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    17. Nicholas Santella, 2023. "Climate related trends in US hazardous material releases caused by natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 735-756, January.
    18. Razieh Doregar Zavareh & Tooraj Dana & Emad Roayaei & Seyed Massoud Monavari & Seyed Ali Jozi, 2022. "The Environmental Risk Assessment of Fire and Explosion in Storage Tanks of Petroleum Products," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    19. Xie, Shuyi & Huang, Zimeng & Wu, Gang & Luo, Jinheng & Li, Lifeng & Ma, Weifeng & Wang, Bohong, 2024. "Combining precursor and Cloud Leaky noisy-OR logic gate Bayesian network for dynamic probability analysis of major accidents in the oil depots," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    20. Hossain, Eklas & Roy, Shidhartho & Mohammad, Naeem & Nawar, Nafiu & Dipta, Debopriya Roy, 2021. "Metrics and enhancement strategies for grid resilience and reliability during natural disasters," Applied Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6902-:d:832199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.