IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v242y2025ics0960148125000825.html
   My bibliography  Save this article

Design and experimental study on performance of different types of micro heat pipe arrays for thermal management of a novel mixed-cooling proton exchange membrane fuel cells stack

Author

Listed:
  • Yang, Mingguang
  • Zhao, Yaohua
  • Quan, Zhenhua
  • Wang, Lincheng
  • Liu, Zichu
  • Chang, Zejian

Abstract

This study proposes a new mixed-cooling micro heat pipe array–proton exchange membrane fuel cell (MHPA-PEMFC) stack by developing and assembling three different shapes and new structures of MHPA. This concept effectively solves heat dissipation under high-temperature conditions and during preheating in a low-temperature environment of the PEMFC field without increasing the fan configuration and parasitic power of the stack. The performance of the three MHPAs is experimentally tested. Results show that the three types of MHPAs fully satisfy the thermal management requirements of PEMFC stacks. The double-rectangle MHPA exhibits the minimum thermal resistance of 0.18 °C/W, and the rectangle MHPA exhibits the minimum dynamic thermal response time of 100 s. The heat transfer characteristics of MHPAs can be enhanced by attaching fins, reducing ambient air temperature, and increasing cooling air velocity. The temperature difference of the MHPA can decrease by 17.7 % with fins. The thermal performance of MHPAs at high ambient temperature is worse than that at low ambient temperature. As the cooling air velocity increases, the thermal resistance of the rectangle MHPA, parallelogram MHPA, and double-rectangle MHPA decreases to 140 %, 117 % and 117 %, respectively.

Suggested Citation

  • Yang, Mingguang & Zhao, Yaohua & Quan, Zhenhua & Wang, Lincheng & Liu, Zichu & Chang, Zejian, 2025. "Design and experimental study on performance of different types of micro heat pipe arrays for thermal management of a novel mixed-cooling proton exchange membrane fuel cells stack," Renewable Energy, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:renene:v:242:y:2025:i:c:s0960148125000825
    DOI: 10.1016/j.renene.2025.122420
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125000825
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Daud, W.R.W. & Rosli, R.E. & Majlan, E.H. & Hamid, S.A.A. & Mohamed, R. & Husaini, T., 2017. "PEM fuel cell system control: A review," Renewable Energy, Elsevier, vol. 113(C), pages 620-638.
    2. Ling, C.Y. & Cao, H. & Chen, Y. & Han, M. & Birgersson, E., 2016. "Compact open cathode feed system for PEMFCs," Applied Energy, Elsevier, vol. 164(C), pages 670-675.
    3. Yu, Xingzi & Zhang, Caizhi & Li, Mengxiao & Wang, Gucheng & Tu, Zhengkai & Yu, Tao & Dong, Hui & Zhao, Fuqiang, 2024. "Thermal management of an open-cathode PEMFC based on constraint generalized predictive control and optimized strategy," Renewable Energy, Elsevier, vol. 220(C).
    4. Weng, Fang-Bor & Dlamini, Mangaliso Menzi & Tirumalasetti, Pandu Ranga & Hwang, Jenn-Jiang, 2024. "Experimental evaluation of flow field design on open-cathode proton exchange membrane fuel cells (PEMFC) short stack consisting of three cells," Renewable Energy, Elsevier, vol. 226(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Caizhi & Yu, Xingzi & Rubel, Hossain Md & Li, Qi & Sun, Yuhui & Jiang, Shangfeng & Wang, Gucheng, 2025. "Fault-tolerant method of open-cathode PEMFC based on adaptive strong tracking Kalman filter combined with Hampel algorithm," Applied Energy, Elsevier, vol. 388(C).
    2. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    3. Komova, O.V. & Simagina, V.I. & Butenko, V.R. & Odegova, G.V. & Bulavchenko, O.A. & Nikolaeva, O.A. & Ozerova, A.M. & Lipatnikova, I.L. & Tayban, E.S. & Mukha, S.A. & Netskina, O.V., 2022. "Dehydrogenation of ammonia borane recrystallized by different techniques," Renewable Energy, Elsevier, vol. 184(C), pages 460-472.
    4. Wu, Kangcheng & Du, Qing & Zu, Bingfeng & Wang, Yupeng & Cai, Jun & Gu, Xin & Xuan, Jin & Jiao, Kui, 2021. "Enabling real-time optimization of dynamic processes of proton exchange membrane fuel cell: Data-driven approach with semi-recurrent sliding window method," Applied Energy, Elsevier, vol. 303(C).
    5. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Pei, Yaowang & Chen, Fengxiang & Jiao, Jieran & Ye, Huan & Zhang, Caizhi & Jiang, Xiaojie, 2024. "Fuel cell temperature control based on nonlinear transformation mitigating system nonlinearity," Renewable Energy, Elsevier, vol. 230(C).
    7. Zhao, Chen & Wang, Fei, 2023. "Optimal performance and modeling study of air-cooled proton exchange membrane fuel cell with various bipolar plate structure," Applied Energy, Elsevier, vol. 345(C).
    8. Nicu Bizon & Mircea Raceanu & Emmanouel Koudoumas & Adriana Marinoiu & Emmanuel Karapidakis & Elena Carcadea, 2020. "Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus," Energies, MDPI, vol. 13(22), pages 1-26, November.
    9. Elkholy, M.H. & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Smart centralized energy management system for autonomous microgrid using FPGA," Applied Energy, Elsevier, vol. 317(C).
    10. Won, Jinyeon & Oh, Hwanyeong & Hong, Jongsup & Kim, Minjin & Lee, Won-Yong & Choi, Yoon-Young & Han, Soo-Bin, 2021. "Hybrid diagnosis method for initial faults of air supply systems in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 180(C), pages 343-352.
    11. Wei, L. & Wu, M.C. & Zhao, T.S. & Zeng, Y.K. & Ren, Y.X., 2018. "An aqueous alkaline battery consisting of inexpensive all-iron redox chemistries for large-scale energy storage," Applied Energy, Elsevier, vol. 215(C), pages 98-105.
    12. Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Feedback linearization-based MIMO model predictive control with defined pseudo-reference for hydrogen regulation of automotive fuel cells," Applied Energy, Elsevier, vol. 293(C).
    13. Latif, Hamid & Wasif, Danish & Rasheed, Saba & Sattar, Abdul & Rafique, M. Shahid & Anwar, Abdul Waheed & Zaheer, S. & Shabbir, Syeda Ammara & Imtiaz, Ayesha & Qutab, Mehwish & Usman, Arslan, 2020. "Gold nanoparticles mixed multiwall carbon nanotubes, supported on graphene nano-ribbons (Au-NT-G) as an efficient reduction electrode for Polymer Electrolyte Membrane fuel cells (PEMFC)," Renewable Energy, Elsevier, vol. 154(C), pages 767-773.
    14. Chang, Huawei & Yang, Zhengbo & Tu, Zhengkai, 2024. "Experimental study on the cold-start performance of a gas heating assisted air-cooled proton exchange membrane fuel cell stack," Renewable Energy, Elsevier, vol. 234(C).
    15. Adam Polak, 2020. "Simulation of Fuzzy Control of Oxygen Flow in PEM Fuel Cells," Energies, MDPI, vol. 13(9), pages 1-26, May.
    16. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Huang, Hao, 2020. "Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    17. Tu, Xikai & Lv, Jin & Wu, Jin & Luo, Xiaobing & Tu, Zhengkai, 2025. "Experimental investigation of a novel open cathode air-cooled fuel cell stack design featuring simultaneous inlet blowing and outlet suction," Energy, Elsevier, vol. 314(C).
    18. Laura Zecchi & Giulia Sandrini & Marco Gadola & Daniel Chindamo, 2022. "Modeling of a Hybrid Fuel Cell Powertrain with Power Split Logic for Onboard Energy Management Using a Longitudinal Dynamics Simulation Tool," Energies, MDPI, vol. 15(17), pages 1-18, August.
    19. Nicu Bizon & Mihai Oproescu, 2018. "Experimental Comparison of Three Real-Time Optimization Strategies Applied to Renewable/FC-Based Hybrid Power Systems Based on Load-Following Control," Energies, MDPI, vol. 11(12), pages 1-32, December.
    20. Qiu, Diankai & Zhou, Xiangyang & Chen, Minxue & Xu, Zhutian & Peng, Linfa, 2023. "Optimization of control strategy for air-cooled PEMFC based on in-situ observation of internal reaction state," Applied Energy, Elsevier, vol. 350(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:242:y:2025:i:c:s0960148125000825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.