IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v241y2025ics0960148124023504.html
   My bibliography  Save this article

Peculiarities of bio-oil and biochar obtained from the lignin-rich residue of the enzymatic hydrolysis of sugarcane bagasse

Author

Listed:
  • Gomes, Gustavo R.
  • de Jesus, Ester G.
  • Jacintho, Jaqueline C.C.
  • García, Diana L.G.
  • Alencar, Bárbara R.A.
  • Gabetto, Fernanda P.
  • Gomes, Joice J.
  • Carvalho, João L.N.
  • Strauss, Mathias
  • Driemeier, Carlos

Abstract

In the quest for sustainable energy and climate solutions, this work investigates the pyrolysis of the lignin-rich enzymatic hydrolysis residue (EHR), a feedstock available at scale in the nascent cellulosic ethanol industry. The uniqueness of EHR was investigated by a systematic series of feedstocks, submitting sugarcane bagasse to steam-explosion pretreatment followed by carbohydrate enzymatic hydrolysis. The solid biomass of each process step (raw, pretreated, and EHR) was pyrolyzed (450 °C, 30 min, fixed bed reactor), followed by comprehensive characterization of bio-oil (FTIR, NMR, GPC, and GC-MS) and biochar (SEM, XPS, Raman, and TGA), and biochar stability and application assays (methylene blue adsorption and soil greenhouse gas emissions). EHR bio-oil was less oxygenated (mainly through lower carboxyl content) and slightly enriched in aromatics. EHR biochar was less oxygenated, more graphitic, and more stable (mechanically and thermally). These are favorable traits for fuels and chemicals from bio-oil and carbon removal with biochar. Nevertheless, EHR biochar applications showed lower dye adsorption and higher nitrous oxide emissions from biochar-treated soils. These findings demonstrate that EHR pyrolysis is a promising pathway to expand biomass carbon utilization and instigate further research to optimize EHR pyrolysis and enhance the functionality of EHR biochar for agri-environmental applications.

Suggested Citation

  • Gomes, Gustavo R. & de Jesus, Ester G. & Jacintho, Jaqueline C.C. & García, Diana L.G. & Alencar, Bárbara R.A. & Gabetto, Fernanda P. & Gomes, Joice J. & Carvalho, João L.N. & Strauss, Mathias & Driem, 2025. "Peculiarities of bio-oil and biochar obtained from the lignin-rich residue of the enzymatic hydrolysis of sugarcane bagasse," Renewable Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148124023504
    DOI: 10.1016/j.renene.2024.122282
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124023504
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122282?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Antonio Bizzo, Waldir & Lenço, Paulo César & Carvalho, Danilo José & Veiga, João Paulo Soto, 2014. "The generation of residual biomass during the production of bio-ethanol from sugarcane, its characterization and its use in energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 589-603.
    2. Wang, Xiaoxiang & Cao, Li & Lewis, Rosmala & Hreid, Tubuxin & Zhang, Zhanying & Wang, Hongxia, 2020. "Biorefining of sugarcane bagasse to fermentable sugars and surface oxygen group-rich hierarchical porous carbon for supercapacitors," Renewable Energy, Elsevier, vol. 162(C), pages 2306-2317.
    3. Yang, Zixu & Kumar, Ajay & Huhnke, Raymond L., 2015. "Review of recent developments to improve storage and transportation stability of bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 859-870.
    4. Xu, Jun & Liu, Jiawei & Ling, Peng & Zhang, Xin & Xu, Kai & He, Limo & Wang, Yi & Su, Sheng & Hu, Song & Xiang, Jun, 2020. "Raman spectroscopy of biochar from the pyrolysis of three typical Chinese biomasses: A novel method for rapidly evaluating the biochar property," Energy, Elsevier, vol. 202(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhowmick, Sundipan & Das, Swati & Kumar, Ravi Ranjan & Ghangrekar, Makarand M. & Sen, Ramkrishna, 2024. "A simple synthesis of bio-based cathode catalyst of microbial fuel cell with bio-oil recovery through pyrolysis of defatted yeast-biomass," Renewable Energy, Elsevier, vol. 237(PC).
    2. Yousef, Samy & Eimontas, Justas & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2022. "Gasification kinetics of char derived from metallised food packaging plastics waste pyrolysis," Energy, Elsevier, vol. 239(PB).
    3. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Jiang, Xu & Xu, Jun & He, Qichen & Wang, Cong & Jiang, Long & Xu, Kai & Wang, Yi & Su, Sheng & Hu, Song & Du, Zhenyi & Xiang, Jun, 2023. "A study of the relationships between coal heterogeneous chemical structure and pyrolysis behaviours: Mechanism and predicting model," Energy, Elsevier, vol. 282(C).
    5. Pérez, Nestor Proenza & Pedroso, Daniel Travieso & Machin, Einara Blanco & Antunes, Julio Santana & Tuna, Celso Eduardo & Silveira, José Luz, 2019. "Geometrical characteristics of sugarcane bagasse for being used as fuel in fluidized bed technologies," Renewable Energy, Elsevier, vol. 143(C), pages 1210-1224.
    6. Gilani, H. & Sahebi, H. & Oliveira, Fabricio, 2020. "Sustainable sugarcane-to-bioethanol supply chain network design: A robust possibilistic programming model," Applied Energy, Elsevier, vol. 278(C).
    7. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
    8. Zhang, Shuping & Su, Yinhai & Xu, Dan & Zhu, Shuguang & Zhang, Houlei & Liu, Xinzhi, 2018. "Effects of torrefaction and organic-acid leaching pretreatment on the pyrolysis behavior of rice husk," Energy, Elsevier, vol. 149(C), pages 804-813.
    9. Fang, Shuqi & Jiang, Luyao & Li, Pan & Bai, Jing & Chang, Chun, 2020. "Study on pyrolysis products characteristics of medical waste and fractional condensation of the pyrolysis oil," Energy, Elsevier, vol. 195(C).
    10. Zheng, Kaiyue & Hu, Song & Gong, Zhijie & Jia, Mengchuan & Xu, Kai & Xu, Jun & Jiang, Long & Wang, Yi & Su, Sheng & Xiang, Jun, 2025. "Interaction among cellulose, hemicellulose and lignin during pressurized pyrolysis: Importance of deoxygenation and aromatization reactions," Energy, Elsevier, vol. 314(C).
    11. Nanduri, Arvind & Kulkarni, Shreesh S. & Mills, Patrick L., 2021. "Experimental techniques to gain mechanistic insight into fast pyrolysis of lignocellulosic biomass: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    12. Khatiwada, Dilip & Leduc, Sylvain & Silveira, Semida & McCallum, Ian, 2016. "Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil," Renewable Energy, Elsevier, vol. 85(C), pages 371-386.
    13. Ozpinar, Pelin & Dogan, Ceren & Demiral, Hakan & Morali, Ugur & Erol, Salim & Samdan, Canan & Yildiz, Derya & Demiral, Ilknur, 2022. "Activated carbons prepared from hazelnut shell waste by phosphoric acid activation for supercapacitor electrode applications and comprehensive electrochemical analysis," Renewable Energy, Elsevier, vol. 189(C), pages 535-548.
    14. Chen, Chao & Liang, Rui & Zhu, Jingyu & Tao, Junyu & Lv, Xuebin & Yan, Beibei & Cheng, Zhanjun & Chen, Guanyi, 2024. "Combination of integrated machine learning model frameworks and infrared spectroscopy towards fast and interpretable characterization of model pyrolysis oil," Renewable Energy, Elsevier, vol. 236(C).
    15. Wang, Chu & Ding, Haozhi & Zhang, Yiming & Zhu, Xifeng, 2020. "Analysis of property variation and stability on the aging of bio-oil from fractional condensation," Renewable Energy, Elsevier, vol. 148(C), pages 720-728.
    16. Granados, D.A. & Ruiz, R.A. & Vega, L.Y. & Chejne, F., 2017. "Study of reactivity reduction in sugarcane bagasse as consequence of a torrefaction process," Energy, Elsevier, vol. 139(C), pages 818-827.
    17. Ribeiro, Luiz Augusto Badan & Martins, Robson Cristiano & Mesa-Pérez, Juan Miguel & Bizzo, Waldir Antonio, 2019. "Study of bio-oil properties and ageing through fractionation and ternary mixtures with the heavy fraction as the main component," Energy, Elsevier, vol. 169(C), pages 344-355.
    18. Rahimi, Mohammad & Abbaspour-Fard, Mohammad Hossein & Rohani, Abbas, 2021. "A multi-data-driven procedure towards a comprehensive understanding of the activated carbon electrodes performance (using for supercapacitor) employing ANN technique," Renewable Energy, Elsevier, vol. 180(C), pages 980-992.
    19. Sara Restrepo-Valencia & Arnaldo Walter, 2019. "Techno-Economic Assessment of Bio-Energy with Carbon Capture and Storage Systems in a Typical Sugarcane Mill in Brazil," Energies, MDPI, vol. 12(6), pages 1-13, March.
    20. Veiga, João Paulo Soto & Valle, Teresa Losada & Feltran, José Carlos & Bizzo, Waldir Antonio, 2016. "Characterization and productivity of cassava waste and its use as an energy source," Renewable Energy, Elsevier, vol. 93(C), pages 691-699.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148124023504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.