IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v189y2022icp535-548.html
   My bibliography  Save this article

Activated carbons prepared from hazelnut shell waste by phosphoric acid activation for supercapacitor electrode applications and comprehensive electrochemical analysis

Author

Listed:
  • Ozpinar, Pelin
  • Dogan, Ceren
  • Demiral, Hakan
  • Morali, Ugur
  • Erol, Salim
  • Samdan, Canan
  • Yildiz, Derya
  • Demiral, Ilknur

Abstract

In this study, the activated carbon was produced from hazelnut-shell wastes using a single-step chemical activation. The activated carbon with a specific surface area of 1363 m2 g−1 and micropore volume of 0.52 cm3 g−1 was used to synthesize magnetic activated carbon to investigate the influence of the magnetization on the capacitive performance. The porous carbon samples were characterized using various techniques and analyses including N2 adsorption-desorption isotherms, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, Raman, and vibrating sample magnetometer. The prepared electrodes were evaluated by cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The specific capacitance values of the activated carbon electrode and magnetic-activated carbon electrode were 247.8 F g−1 and 76.23 F g−1 at 0.75 A g−1, respectively. Moreover, the impedance responses were mathematically modeled using an equivalent electric circuit. Although a more homogeneous current distribution was obtained for the magnetic activated carbon, the higher constant phase element coefficient of the activated carbon demonstrated a higher capability of adsorption of mobile ions. The results showed the higher capacitive performance of the activated carbon electrodes for energy applications.

Suggested Citation

  • Ozpinar, Pelin & Dogan, Ceren & Demiral, Hakan & Morali, Ugur & Erol, Salim & Samdan, Canan & Yildiz, Derya & Demiral, Ilknur, 2022. "Activated carbons prepared from hazelnut shell waste by phosphoric acid activation for supercapacitor electrode applications and comprehensive electrochemical analysis," Renewable Energy, Elsevier, vol. 189(C), pages 535-548.
  • Handle: RePEc:eee:renene:v:189:y:2022:i:c:p:535-548
    DOI: 10.1016/j.renene.2022.02.126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122002750
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.02.126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Tingting & Luo, Lu & Luo, Lingcong & Deng, Jianping & Wu, Xi & Fan, Mizi & Du, Guanben & Weigang Zhao,, 2021. "High energy density supercapacitors with hierarchical nitrogen-doped porous carbon as active material obtained from bio-waste," Renewable Energy, Elsevier, vol. 175(C), pages 760-769.
    2. Gopalakrishnan, Arthi & Badhulika, Sushmee, 2020. "Sulfonated porous carbon nanosheets derived from oak nutshell based high-performance supercapacitor for powering electronic devices," Renewable Energy, Elsevier, vol. 161(C), pages 173-183.
    3. Wang, Xiaoxiang & Cao, Li & Lewis, Rosmala & Hreid, Tubuxin & Zhang, Zhanying & Wang, Hongxia, 2020. "Biorefining of sugarcane bagasse to fermentable sugars and surface oxygen group-rich hierarchical porous carbon for supercapacitors," Renewable Energy, Elsevier, vol. 162(C), pages 2306-2317.
    4. Cheng, Jie & Hu, Sheng-Chun & Sun, Guo-Tao & Kang, Kang & Zhu, Ming-Qiang & Geng, Zeng-Chao, 2021. "Comparison of activated carbons prepared by one-step and two-step chemical activation process based on cotton stalk for supercapacitors application," Energy, Elsevier, vol. 215(PB).
    5. Jiang, Changle & Yakaboylu, Gunes A. & Yumak, Tugrul & Zondlo, John W. & Sabolsky, Edward M. & Wang, Jingxin, 2020. "Activated carbons prepared by indirect and direct CO2 activation of lignocellulosic biomass for supercapacitor electrodes," Renewable Energy, Elsevier, vol. 155(C), pages 38-52.
    6. Yakaboylu, Gunes A. & Jiang, Changle & Yumak, Tugrul & Zondlo, John W. & Wang, Jingxin & Sabolsky, Edward M., 2021. "Engineered hierarchical porous carbons for supercapacitor applications through chemical pretreatment and activation of biomass precursors," Renewable Energy, Elsevier, vol. 163(C), pages 276-287.
    7. Hu, Sheng-Chun & Cheng, Jie & Wang, Wu-Ping & Sun, Guo-Tao & Hu, Li-Le & Zhu, Ming-Qiang & Huang, Xiao-Hua, 2021. "Structural changes and electrochemical properties of lacquer wood activated carbon prepared by phosphoric acid-chemical activation for supercapacitor applications," Renewable Energy, Elsevier, vol. 177(C), pages 82-94.
    8. Ding, Yan & Li, Yunchao & Dai, Yujie & Han, Xinhong & Xing, Bo & Zhu, Lingjun & Qiu, Kunzan & Wang, Shurong, 2021. "A novel approach for preparing in-situ nitrogen doped carbon via pyrolysis of bean pulp for supercapacitors," Energy, Elsevier, vol. 216(C).
    9. Wang, Chao & Wang, Hanwei & Dang, Baokang & Wang, Zhe & Shen, Xiaoping & Li, Caicai & Sun, Qingfeng, 2020. "Ultrahigh yield of nitrogen doped porous carbon from biomass waste for supercapacitor," Renewable Energy, Elsevier, vol. 156(C), pages 370-376.
    10. Guney, Mukrimin Sevket & Tepe, Yalcin, 2017. "Classification and assessment of energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1187-1197.
    11. Dai, Zhong & Ren, Peng-Gang & He, Wenwei & Hou, Xin & Ren, Fang & Zhang, Qian & Jin, Yan-Ling, 2020. "Boosting the electrochemical performance of nitrogen-oxygen co-doped carbon nanofibers based supercapacitors through esterification of lignin precursor," Renewable Energy, Elsevier, vol. 162(C), pages 613-623.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Liyuan & Wu, Yang & Jiang, Enchen, 2022. "In situ template preparation of porous carbon materials that are derived from swine manure and have ordered hierarchical nanopore structures for energy storage," Energy, Elsevier, vol. 242(C).
    2. Xu, Xiaodong & Sielicki, Krzysztof & Min, Jiakang & Li, Jiaxin & Hao, Chuncheng & Wen, Xin & Chen, Xuecheng & Mijowska, Ewa, 2022. "One-step converting biowaste wolfberry fruits into hierarchical porous carbon and its application for high-performance supercapacitors," Renewable Energy, Elsevier, vol. 185(C), pages 187-195.
    3. Wang, Xiaoxiang & Cao, Li & Lewis, Rosmala & Hreid, Tubuxin & Zhang, Zhanying & Wang, Hongxia, 2020. "Biorefining of sugarcane bagasse to fermentable sugars and surface oxygen group-rich hierarchical porous carbon for supercapacitors," Renewable Energy, Elsevier, vol. 162(C), pages 2306-2317.
    4. Sakthivel, Mani & Ramki, Settu & Chen, Shen-Ming & Ho, Kuo-Chuan, 2022. "Defect rich Se–CoWS2 as anode and banana flower skin-derived activated carbon channels with interconnected porous structure as cathode materials for asymmetric supercapacitor application," Energy, Elsevier, vol. 257(C).
    5. Olabi, Abdul Ghani & Abbas, Qaisar & Al Makky, Ahmed & Abdelkareem, Mohammad Ali, 2022. "Supercapacitors as next generation energy storage devices: Properties and applications," Energy, Elsevier, vol. 248(C).
    6. Rahimi, Mohammad & Abbaspour-Fard, Mohammad Hossein & Rohani, Abbas, 2021. "A multi-data-driven procedure towards a comprehensive understanding of the activated carbon electrodes performance (using for supercapacitor) employing ANN technique," Renewable Energy, Elsevier, vol. 180(C), pages 980-992.
    7. Zhou, Man & Li, Kai & Hu, Jinguang & Tang, Liping & Li, Mingliu & Su, Lifang & Zhao, Hong & Ko, Frank & Cai, Zaisheng & Zhao, Yaping, 2022. "Sustainable production of oxygen-rich hierarchically porous carbon network from corn straw lignin and silk degumming wastewater for high-performance electrochemical energy storage," Renewable Energy, Elsevier, vol. 191(C), pages 141-150.
    8. Sun, Bingkang & Zhang, Xiaoyun & Fan, Xing & Wang, Ruiyu & Bai, Hongcun & Wei, Xianyong, 2022. "Interface modification based on MnO2@N-doped activated carbon composites for flexible solid-state asymmetric supercapacitors," Energy, Elsevier, vol. 249(C).
    9. Li, Linghao & Zheng, Xiaoen & Zhang, Fan & Yu, Haipeng & Wang, Hong & Jia, Zhiwen & Sun, Yan & Jiang, Enchen & Xu, Xiwei, 2023. "Formamide hydrothermal pretreatment assisted camellia shell for upgrading to N-containing chemical and supercapacitor electrode preparation using the residue," Energy, Elsevier, vol. 265(C).
    10. Dhakal, Ganesh & Mohapatra, Debananda & Kim, Young-Il & Lee, Jintae & Kim, Woo Kyoung & Shim, Jae-Jin, 2022. "High-performance supercapacitors fabricated with activated carbon derived from lotus calyx biowaste," Renewable Energy, Elsevier, vol. 189(C), pages 587-600.
    11. Ebrahimi, Armin & Ghorbani, Bahram & Ziabasharhagh, Masoud, 2020. "Introducing a novel integrated cogeneration system of power and cooling using stored liquefied natural gas as a cryogenic energy storage system," Energy, Elsevier, vol. 206(C).
    12. Du, Shilin & Shu, Rui & Guo, Feiqiang & Mao, Songbo & Bai, Jiaming & Qian, Lin & Xin, Chengyun, 2022. "Porous coal char-based catalyst from coal gangue and lignite with high metal contents in the catalytic cracking of biomass tar," Energy, Elsevier, vol. 249(C).
    13. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    14. Chen, Hao & Wang, Huanran & Li, Ruixiong & Sun, Hao & Ge, Gangqiang & Ling, Lanning, 2022. "Experimental and analytical investigation of near-isothermal pumped hydro-compressed air energy storage system," Energy, Elsevier, vol. 249(C).
    15. Alexandru Ciocan & Cosmin Ungureanu & Alin Chitu & Elena Carcadea & George Darie, 2020. "Electrical Longboard for Everyday Urban Commuting," Sustainability, MDPI, vol. 12(19), pages 1-14, September.
    16. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Bizon, Nicu, 2019. "Hybrid power sources (HPSs) for space applications: Analysis of PEMFC/Battery/SMES HPS under unknown load containing pulses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 14-37.
    18. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Dynamic modelling and thermoeconomic analysis of micro wind turbines and building integrated photovoltaic panels," Renewable Energy, Elsevier, vol. 160(C), pages 633-652.
    19. Muhammad Yaseen & Muhammad Arif Khan Khattak & Muhammad Humayun & Muhammad Usman & Syed Shaheen Shah & Shaista Bibi & Bakhtiar Syed Ul Hasnain & Shah Masood Ahmad & Abbas Khan & Nasrullah Shah & Asif , 2021. "A Review of Supercapacitors: Materials Design, Modification, and Applications," Energies, MDPI, vol. 14(22), pages 1-40, November.
    20. Jiang, Zhuosheng & Zhai, Shengli & Huang, Mingzhi & Songsiriritthigul, Prayoon & Aung, Su Htike & Oo, Than Zaw & Luo, Min & Chen, Fuming, 2021. "3D carbon nanocones/metallic MoS2 nanosheet electrodes towards flexible supercapacitors for wearable electronics," Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:189:y:2022:i:c:p:535-548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.