IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v162y2020icp2306-2317.html
   My bibliography  Save this article

Biorefining of sugarcane bagasse to fermentable sugars and surface oxygen group-rich hierarchical porous carbon for supercapacitors

Author

Listed:
  • Wang, Xiaoxiang
  • Cao, Li
  • Lewis, Rosmala
  • Hreid, Tubuxin
  • Zhang, Zhanying
  • Wang, Hongxia

Abstract

In this work, a biorefinery process was demonstrated for co-production of fermentable sugars and hierarchical porous carbon with oxygen-rich groups for energy storage devices from sugarcane bagasse. By using the biorefinery process, every one tonne of sugarcane bagasse can produce approximately 234 kg glucose from pretreatment and enzymatic hydrolysis and 71 kg porous carbon from enzymatic hydrolysis (lignin-rich) residue following a fast and catalyst-free hydrothermal carbonisation (240 °C for 3 h) and a subsequent KOH-assisted activation process (C-hydrochar). In contrast, only 51 kg of activated carbon (C-residue) from the lignin-rich residue and 81 kg activated carbon (C-bagasse) but no sugars from the whole sugarcane bagasse were produced using a one-step pyrolysis/activation process. Compared to the C-residue and C-bagasse, the C-hydrochar had a comparable specific surface area of 1436.7 m2 g−1. However, the C-hydrochar demonstrated the highest volume proportion of micropores and the highest surface O/C ratio. As a result, the C-hydrochar demonstrated a high electrochemical performance with specific capacitance of 185.5 F g−1 at a current density of 0.5 A g−1, and 150.7 F g−1 at a current density of 20 A g−1, respectively. The symmetric supercapacitor that was assembled by using two identical as-synthesized C-hydrochar porous carbon electrodes exhibited a high-power density of 6120 W kg−1 with energy density of 1.02 Wh kg−1 and a high energy density of 5.86 Wh kg−1 at power density of 405 W kg−1. Additionally, the device showed superior cycling performance with 96% capacitance retention after 10,000 cycles at a current density of 10 A g−1. Compared to previous report, this study indicates that pore volume distribution and surface oxygen-containing groups rather than specific surface area play more critical roles in the electrochemistry performance of carbon materials.

Suggested Citation

  • Wang, Xiaoxiang & Cao, Li & Lewis, Rosmala & Hreid, Tubuxin & Zhang, Zhanying & Wang, Hongxia, 2020. "Biorefining of sugarcane bagasse to fermentable sugars and surface oxygen group-rich hierarchical porous carbon for supercapacitors," Renewable Energy, Elsevier, vol. 162(C), pages 2306-2317.
  • Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:2306-2317
    DOI: 10.1016/j.renene.2020.09.118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120315433
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.09.118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gopalakrishnan, Arthi & Badhulika, Sushmee, 2020. "Sulfonated porous carbon nanosheets derived from oak nutshell based high-performance supercapacitor for powering electronic devices," Renewable Energy, Elsevier, vol. 161(C), pages 173-183.
    2. Tamilselvi, R. & Ramesh, M. & Lekshmi, G.S. & Bazaka, Olha & Levchenko, Igor & Bazaka, Kateryna & Mandhakini, M., 2020. "Graphene oxide – Based supercapacitors from agricultural wastes: A step to mass production of highly efficient electrodes for electrical transportation systems," Renewable Energy, Elsevier, vol. 151(C), pages 731-739.
    3. Gou, Guangjun & Huang, Fei & Jiang, Man & Li, Jinyang & Zhou, Zuowan, 2020. "Hierarchical porous carbon electrode materials for supercapacitor developed from wheat straw cellulosic foam," Renewable Energy, Elsevier, vol. 149(C), pages 208-216.
    4. Wang, Chao & Wang, Hanwei & Dang, Baokang & Wang, Zhe & Shen, Xiaoping & Li, Caicai & Sun, Qingfeng, 2020. "Ultrahigh yield of nitrogen doped porous carbon from biomass waste for supercapacitor," Renewable Energy, Elsevier, vol. 156(C), pages 370-376.
    5. M. Salanne & B. Rotenberg & K. Naoi & K. Kaneko & P.-L. Taberna & C. P. Grey & B. Dunn & P. Simon, 2016. "Efficient storage mechanisms for building better supercapacitors," Nature Energy, Nature, vol. 1(6), pages 1-10, June.
    6. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    7. Garcia, Betzaida Batalla & Candelaria, Stephanie L. & Liu, Dawei & Sepheri, Saghar & Cruz, James A. & Cao, Guozhong, 2011. "High performance high-purity sol-gel derived carbon supercapacitors from renewable sources," Renewable Energy, Elsevier, vol. 36(6), pages 1788-1794.
    8. Dai, Zhong & Ren, Peng-Gang & He, Wenwei & Hou, Xin & Ren, Fang & Zhang, Qian & Jin, Yan-Ling, 2020. "Boosting the electrochemical performance of nitrogen-oxygen co-doped carbon nanofibers based supercapacitors through esterification of lignin precursor," Renewable Energy, Elsevier, vol. 162(C), pages 613-623.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ozpinar, Pelin & Dogan, Ceren & Demiral, Hakan & Morali, Ugur & Erol, Salim & Samdan, Canan & Yildiz, Derya & Demiral, Ilknur, 2022. "Activated carbons prepared from hazelnut shell waste by phosphoric acid activation for supercapacitor electrode applications and comprehensive electrochemical analysis," Renewable Energy, Elsevier, vol. 189(C), pages 535-548.
    2. Rahimi, Mohammad & Abbaspour-Fard, Mohammad Hossein & Rohani, Abbas, 2021. "A multi-data-driven procedure towards a comprehensive understanding of the activated carbon electrodes performance (using for supercapacitor) employing ANN technique," Renewable Energy, Elsevier, vol. 180(C), pages 980-992.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Xiaodong & Sielicki, Krzysztof & Min, Jiakang & Li, Jiaxin & Hao, Chuncheng & Wen, Xin & Chen, Xuecheng & Mijowska, Ewa, 2022. "One-step converting biowaste wolfberry fruits into hierarchical porous carbon and its application for high-performance supercapacitors," Renewable Energy, Elsevier, vol. 185(C), pages 187-195.
    2. Li, Dong & Guo, Yanchuan & Li, Yi & Liu, Zhengang & Chen, Zeliang, 2022. "Waste-biomass tar functionalized carbon spheres with N/P Co-doping and hierarchical pores as sustainable low-cost energy storage materials," Renewable Energy, Elsevier, vol. 188(C), pages 61-69.
    3. Ozpinar, Pelin & Dogan, Ceren & Demiral, Hakan & Morali, Ugur & Erol, Salim & Samdan, Canan & Yildiz, Derya & Demiral, Ilknur, 2022. "Activated carbons prepared from hazelnut shell waste by phosphoric acid activation for supercapacitor electrode applications and comprehensive electrochemical analysis," Renewable Energy, Elsevier, vol. 189(C), pages 535-548.
    4. Dai, Zhong & Ren, Peng-Gang & He, Wenwei & Hou, Xin & Ren, Fang & Zhang, Qian & Jin, Yan-Ling, 2020. "Boosting the electrochemical performance of nitrogen-oxygen co-doped carbon nanofibers based supercapacitors through esterification of lignin precursor," Renewable Energy, Elsevier, vol. 162(C), pages 613-623.
    5. Yuan, Xiangzhou & Wang, Junyao & Deng, Shuai & Suvarna, Manu & Wang, Xiaonan & Zhang, Wei & Hamilton, Sara Triana & Alahmed, Ammar & Jamal, Aqil & Park, Ah-Hyung Alissa & Bi, Xiaotao & Ok, Yong Sik, 2022. "Recent advancements in sustainable upcycling of solid waste into porous carbons for carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    6. Zhu, Zongyuan & Xu, Zhen, 2020. "The rational design of biomass-derived carbon materials towards next-generation energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Verma, Chandra Jeet & Kumar, Ashish & Pal, Shweta & Sinha, Shashwat & Singh, Ashish Kumar & Jaiswal, Aniruddha & Prakash, Rajiv, 2020. "Polyaniline stabilized activated carbon from Eichhornia Crassipes: Potential charge storage material from bio-waste," Renewable Energy, Elsevier, vol. 162(C), pages 2285-2296.
    8. Giuseppe Maggiotto & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2023. "Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review," Energies, MDPI, vol. 16(19), pages 1-17, September.
    9. Juntao Wei & Jiawei Sun & Deliang Xu & Lei Shi & Miao Wang & Bin Li & Xudong Song & Shu Zhang & Hong Zhang, 2023. "Preparation and Electrochemical Performance of Bio-Oil-Derived Hydrochar as a Supercapacitor Electrode Material," IJERPH, MDPI, vol. 20(2), pages 1-12, January.
    10. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    11. Liu, Zhanglin & Wan, Xue & Wang, Qing & Tian, Dong & Hu, Jinguang & Huang, Mei & Shen, Fei & Zeng, Yongmei, 2021. "Performances of a multi-product strategy for bioethanol, lignin, and ultra-high surface area carbon from lignocellulose by PHP (phosphoric acid plus hydrogen peroxide) pretreatment platform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Mäkelä, Mikko & Yoshikawa, Kunio, 2016. "Simulating hydrothermal treatment of sludge within a pulp and paper mill," Applied Energy, Elsevier, vol. 173(C), pages 177-183.
    13. Qin, Liyuan & Wu, Yang & Jiang, Enchen, 2022. "In situ template preparation of porous carbon materials that are derived from swine manure and have ordered hierarchical nanopore structures for energy storage," Energy, Elsevier, vol. 242(C).
    14. Yao, Zhongliang & Ma, Xiaoqian & Xiao, Zhiyuan, 2020. "The effect of two pretreatment levels on the pyrolysis characteristics of water hyacinth," Renewable Energy, Elsevier, vol. 151(C), pages 514-527.
    15. Tobias Pröll & Florian Zerobin, 2019. "Biomass-based negative emission technology options with combined heat and power generation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(7), pages 1307-1324, October.
    16. Tariqul Islam & Yanliang Li & Hefa Cheng, 2021. "Biochars and Engineered Biochars for Water and Soil Remediation: A Review," Sustainability, MDPI, vol. 13(17), pages 1-25, September.
    17. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    18. Leslie Lara-Ramos & Ana Cervera-Mata & Jesús Fernández-Bayo & Miguel Navarro-Alarcón & Gabriel Delgado & Alejandro Fernández-Arteaga, 2023. "Hydrochars Derived from Spent Coffee Grounds as Zn Bio-Chelates for Agronomic Biofortification," Sustainability, MDPI, vol. 15(13), pages 1-13, July.
    19. Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    20. Abdulrahman S. Binfaris & Alexander G. Zestos & Jandro L. Abot, 2023. "Development of Carbon Nanotube Yarn Supercapacitors and Energy Storage for Integrated Structural Health Monitoring," Energies, MDPI, vol. 16(15), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:162:y:2020:i:c:p:2306-2317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.