IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipas0960148124016744.html
   My bibliography  Save this article

Research on short-term optimization and scheduling of multi-energy complementary systems based on forecast scenario dynamic correction

Author

Listed:
  • Ji, Xinyang
  • Fang, Guohua
  • Ding, Ziyu

Abstract

The inherent unpredictability and instability of renewable energy sources, such as wind and solar power, hinder the precise execution of power generation plans in complementary systems, posing significant challenges to their integration into power grids. Therefore, this study proposes a dynamic correction method for wind and solar output forecast scenarios in the short-term scheduling of wind-solar-hydro complementary systems. The method utilizes statistical analysis of forecast errors in wind and solar power outputs to characterize uncertainty patterns across different forecast levels and constructs a typical forecast scenario set based on single-day forecasts. This approach probabilistically models each scenario according to the temporal migration patterns of wind and solar power outputs and develops a neural network-based dynamic correction fusion model to refine the forecasts. Application of this method in a case study of the Yalong River Basin demonstrated that, after applying dynamic correction to the forecast scenarios, the mean absolute error in total wind and solar output predictions during the wet and dry seasons was reduced by 50.73 % and 47.95 %, respectively. Additionally, the dynamic correction reduced the maximum residual load on typical wet and dry days by 82.70 % and 62.37 %, respectively, and decreased the total intraday residual electricity by 91.17 % and 73.24 %, compared to single-day forecasts. The study concludes that the proposed dynamic correction method enhances power system stability and improves power generation efficiency and reliability.

Suggested Citation

  • Ji, Xinyang & Fang, Guohua & Ding, Ziyu, 2024. "Research on short-term optimization and scheduling of multi-energy complementary systems based on forecast scenario dynamic correction," Renewable Energy, Elsevier, vol. 237(PA).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016744
    DOI: 10.1016/j.renene.2024.121606
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124016744
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Jianhui & Gu, Yujiong & Wang, Zijie & Zhao, Ziliang & Zhu, Ping, 2024. "Operational characteristics of an integrated island energy system based on multi-energy complementarity," Renewable Energy, Elsevier, vol. 230(C).
    2. Baz, Khan & Cheng, Jinhua & Xu, Deyi & Abbas, Khizar & Ali, Imad & Ali, Hashmat & Fang, Chuandi, 2021. "Asymmetric impact of fossil fuel and renewable energy consumption on economic growth: A nonlinear technique," Energy, Elsevier, vol. 226(C).
    3. Wang, Zhenni & Wen, Xin & Tan, Qiaofeng & Fang, Guohua & Lei, Xiaohui & Wang, Hao & Yan, Jinyue, 2021. "Potential assessment of large-scale hydro-photovoltaic-wind hybrid systems on a global scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    5. Li, Jidong & Chen, Shijun & Wu, Yuqiang & Wang, Qinhui & Liu, Xing & Qi, Lijian & Lu, Xiuyuan & Gao, Lu, 2021. "How to make better use of intermittent and variable energy? A review of wind and photovoltaic power consumption in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Yang, Yuqi & Zhou, Jianzhong & Liu, Guangbiao & Mo, Li & Wang, Yongqiang & Jia, Benjun & He, Feifei, 2020. "Multi-plan formulation of hydropower generation considering uncertainty of wind power," Applied Energy, Elsevier, vol. 260(C).
    7. Bett, Philip E. & Thornton, Hazel E., 2016. "The climatological relationships between wind and solar energy supply in Britain," Renewable Energy, Elsevier, vol. 87(P1), pages 96-110.
    8. Han, Shuo & He, Mengjiao & Zhao, Ziwen & Chen, Diyi & Xu, Beibei & Jurasz, Jakub & Liu, Fusheng & Zheng, Hongxi, 2023. "Overcoming the uncertainty and volatility of wind power: Day-ahead scheduling of hydro-wind hybrid power generation system by coordinating power regulation and frequency response flexibility," Applied Energy, Elsevier, vol. 333(C).
    9. Abbasi, Kashif Raza & Shahbaz, Muhammad & Zhang, Jinjun & Irfan, Muhammad & Alvarado, Rafael, 2022. "Analyze the environmental sustainability factors of China: The role of fossil fuel energy and renewable energy," Renewable Energy, Elsevier, vol. 187(C), pages 390-402.
    10. Kartal, Mustafa Tevfik, 2022. "The role of consumption of energy, fossil sources, nuclear energy, and renewable energy on environmental degradation in top-five carbon producing countries," Renewable Energy, Elsevier, vol. 184(C), pages 871-880.
    11. Andrzej Smolarz & Petro Lezhniuk & Stepan Kudrya & Viacheslav Komar & Vladyslav Lysiak & Iryna Hunko & Saltanat Amirgaliyeva & Saule Smailova & Zhassulan Orazbekov, 2023. "Increasing Technical Efficiency of Renewable Energy Sources in Power Systems," Energies, MDPI, vol. 16(6), pages 1-14, March.
    12. Liu, Zhiqiang & Cui, Yanping & Wang, Jiaqiang & Yue, Chang & Agbodjan, Yawovi Souley & Yang, Yu, 2022. "Multi-objective optimization of multi-energy complementary integrated energy systems considering load prediction and renewable energy production uncertainties," Energy, Elsevier, vol. 254(PC).
    13. Costoya, X. & Rocha, A. & Carvalho, D., 2020. "Using bias-correction to improve future projections of offshore wind energy resource: A case study on the Iberian Peninsula," Applied Energy, Elsevier, vol. 262(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Qiaofeng & Zhang, Ziyi & Wen, Xin & Fang, Guohua & Xu, Shuo & Nie, Zhuang & Wang, Yanling, 2024. "Risk control of hydropower-photovoltaic multi-energy complementary scheduling based on energy storage allocation," Applied Energy, Elsevier, vol. 358(C).
    2. Li, Xudong & Yang, Weijia & Liao, Yiwen & Zhang, Shushu & Zheng, Yang & Zhao, Zhigao & Tang, Maojia & Cheng, Yongguang & Liu, Pan, 2024. "Short-term risk-management for hydro-wind-solar hybrid energy system considering hydropower part-load operating characteristics," Applied Energy, Elsevier, vol. 360(C).
    3. Zhou, Hui & Awosusi, Abraham Ayobamiji & Dagar, Vishal & Zhu, Guohua & Abbas, Shujaat, 2023. "Unleashing the asymmetric effect of natural resources abundance on carbon emissions in regional comprehensive economic partnership: What role do economic globalization and disaggregating energy play?," Resources Policy, Elsevier, vol. 85(PA).
    4. Jiang, Haiyang & Du, Ershun & He, Boyu & Zhang, Ning & Wang, Peng & Li, Fuqiang & Ji, Jie, 2023. "Analysis and modeling of seasonal characteristics of renewable energy generation," Renewable Energy, Elsevier, vol. 219(P1).
    5. Lei, Kaixuan & Chang, Jianxia & Wang, Xuebin & Guo, Aijun & Wang, Yimin & Ren, Chengqing, 2023. "Peak shaving and short-term economic operation of hydro-wind-PV hybrid system considering the uncertainty of wind and PV power," Renewable Energy, Elsevier, vol. 215(C).
    6. Jiang, Jianhua & Ming, Bo & Liu, Pan & Huang, Qiang & Guo, Yi & Chang, Jianxia & Zhang, Wei, 2023. "Refining long-term operation of large hydro–photovoltaic–wind hybrid systems by nesting response functions," Renewable Energy, Elsevier, vol. 204(C), pages 359-371.
    7. Zhang, Yusheng & Zhao, Xuehua & Wang, Xin & Li, Aiyun & Wu, Xinhao, 2023. "Multi-objective optimization design of a grid-connected hybrid hydro-photovoltaic system considering power transmission capacity," Energy, Elsevier, vol. 284(C).
    8. Feng, Zhong-kai & Huang, Qing-qing & Niu, Wen-jing & Su, Hua-ying & Li, Shu-shan & Wu, Hui-jun & Wang, Jia-yang, 2024. "Peak operation optimization of cascade hydropower reservoirs and solar power plants considering output forecasting uncertainty," Applied Energy, Elsevier, vol. 358(C).
    9. Han, Shuo & Yuan, Yifan & He, Mengjiao & Zhao, Ziwen & Xu, Beibei & Chen, Diyi & Jurasz, Jakub, 2024. "A novel day-ahead scheduling model to unlock hydropower flexibility limited by vibration zones in hydropower-variable renewable energy hybrid system," Applied Energy, Elsevier, vol. 356(C).
    10. Jiang, Jianhua & Ming, Bo & Huang, Qiang & Guo, Yi & Shang, Jia’nan & Jurasz, Jakub & Liu, Pan, 2023. "A holistic techno-economic evaluation framework for sizing renewable power plant in a hydro-based hybrid generation system," Applied Energy, Elsevier, vol. 348(C).
    11. He, Mengjiao & Han, Shuo & Chen, Diyi & Zhao, Ziwen & Jurasz, Jakub & Mahmud, Md Apel & Liu, Pan & Deng, Mingjiang, 2024. "Optimizing cascade Hydropower-VRE hybrid systems: A novel approach addressing whole-process vibration to enhance operational safety," Energy, Elsevier, vol. 304(C).
    12. Ding, Ziyu & Wen, Xin & Tan, Qiaofeng & Yang, Tiantian & Fang, Guohua & Lei, Xiaohui & Zhang, Yu & Wang, Hao, 2021. "A forecast-driven decision-making model for long-term operation of a hydro-wind-photovoltaic hybrid system," Applied Energy, Elsevier, vol. 291(C).
    13. Chaoyang Chen & Hualing Liu & Yong Xiao & Fagen Zhu & Li Ding & Fuwen Yang, 2022. "Power Generation Scheduling for a Hydro-Wind-Solar Hybrid System: A Systematic Survey and Prospect," Energies, MDPI, vol. 15(22), pages 1-31, November.
    14. Han, Shuo & He, Mengjiao & Zhao, Ziwen & Chen, Diyi & Xu, Beibei & Jurasz, Jakub & Liu, Fusheng & Zheng, Hongxi, 2023. "Overcoming the uncertainty and volatility of wind power: Day-ahead scheduling of hydro-wind hybrid power generation system by coordinating power regulation and frequency response flexibility," Applied Energy, Elsevier, vol. 333(C).
    15. Zheng, Li & Abbasi, Kashif Raza & Salem, Sultan & Irfan, Muhammad & Alvarado, Rafael & Lv, Kangjuan, 2022. "How technological innovation and institutional quality affect sectoral energy consumption in Pakistan? Fresh policy insights from novel econometric approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    16. Jurasz, Jakub & Beluco, Alexandre & Canales, Fausto A., 2018. "The impact of complementarity on power supply reliability of small scale hybrid energy systems," Energy, Elsevier, vol. 161(C), pages 737-743.
    17. Fan, Wei & Tan, Zhongfu & Li, Fanqi & Zhang, Amin & Ju, Liwei & Wang, Yuwei & De, Gejirifu, 2023. "A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response," Energy, Elsevier, vol. 263(PC).
    18. Thiemo Fetzer & Samuel Marden, 2017. "Take What You Can: Property Rights, Contestability and Conflict," Economic Journal, Royal Economic Society, vol. 0(601), pages 757-783, May.
    19. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Co-optimization for day-ahead scheduling and flexibility response mode of a hydro–wind–solar hybrid system considering forecast uncertainty of variable renewable energy," Energy, Elsevier, vol. 311(C).
    20. Daniel Agness & Travis Baseler & Sylvain Chassang & Pascaline Dupas & Erik Snowberg, 2022. "Valuing the Time of the Self-Employed," CESifo Working Paper Series 9567, CESifo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.