IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v229y2024ics096014812400764x.html
   My bibliography  Save this article

Experimental study on ammonia-based thermochemical resorption thermal energy storage system

Author

Listed:
  • Yan, Ting
  • Xie, Tian
  • Pan, W.G.
  • Wang, L.W.

Abstract

Thermochemical sorption heat storage technology is an attractive way for thermal energy storage, the application of thermal energy storage technologies improves the mismatch between energy supply and demand in time and space, and reduces adverse environmental impacts. It contributes to the realization of cleaner and more efficient energy systems. For the thermochemical resorption system, MnCl2–SrCl2/NH3 was selected as the working pair. A laboratory-scale thermochemical resorption heat storage device was constructed, and the MnCl2–SrCl2/NH3 thermochemical resorption system's heat storage capacity under various operating circumstances was assessed. The effect of several factors on the heat storage capacity of the thermochemical resorption system was assessed using comparative studies of operating parameters. Under the low-temperature salt adsorption/regeneration temperatures of 20 °C, 45 °C for discharging, and 177 °C for charging, the maximum value of the total heat storage density is 2027.74 kJ/kg composite adsorbent. The total heat storage efficiency varies from 0.354 to 0.947. This work is beneficial to promote the application of thermochemical sorption heat storage technology in the low-grade thermal energy recovery, and thus improve the efficiency of energy utilization and achieve the energy-saving as well.

Suggested Citation

  • Yan, Ting & Xie, Tian & Pan, W.G. & Wang, L.W., 2024. "Experimental study on ammonia-based thermochemical resorption thermal energy storage system," Renewable Energy, Elsevier, vol. 229(C).
  • Handle: RePEc:eee:renene:v:229:y:2024:i:c:s096014812400764x
    DOI: 10.1016/j.renene.2024.120696
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812400764X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120696?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. NagaMalleswara Rao & M. Ram Gopal & Souvik Bhattacharyya, 2015. "Analysis of a SrCl2–NH3 solid sorption refrigeration system," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 10(4), pages 365-373.
    2. Wu, S. & Li, T.X. & Wang, R.Z., 2018. "Experimental identification and thermodynamic analysis of ammonia sorption equilibrium characteristics on halide salts," Energy, Elsevier, vol. 161(C), pages 955-962.
    3. Li, T.X. & Wu, S. & Yan, T. & Wang, R.Z. & Zhu, J., 2017. "Experimental investigation on a dual-mode thermochemical sorption energy storage system," Energy, Elsevier, vol. 140(P1), pages 383-394.
    4. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    5. Yan, T. & Wang, R.Z. & Li, T.X. & Wang, L.W. & Fred, Ishugah T., 2015. "A review of promising candidate reactions for chemical heat storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 13-31.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Jianbin & Zhang, Yong & Chen, Ziwei & Gan, Guohui & Su, Yuehong, 2025. "Impact of porous host materials on the compromise of thermochemical energy storage performance," Renewable Energy, Elsevier, vol. 245(C).
    2. Li, Yantong & Liu, Chang & Liang, Junhan & Yin, Huibin, 2025. "Parametric studies and structural optimization of a PCM tank integrated with CO2 heat pumps," Renewable Energy, Elsevier, vol. 238(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, S. & Li, T.X. & Wang, R.Z., 2018. "Experimental identification and thermodynamic analysis of ammonia sorption equilibrium characteristics on halide salts," Energy, Elsevier, vol. 161(C), pages 955-962.
    2. Yan, Ting & Zhang, Hong & Yu, Nan & Li, Dong & Pan, Q.W., 2022. "Performance of thermochemical adsorption heat storage system based on MnCl2-NH3 working pair," Energy, Elsevier, vol. 239(PD).
    3. Fumey, B. & Weber, R. & Baldini, L., 2019. "Sorption based long-term thermal energy storage – Process classification and analysis of performance limitations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 57-74.
    4. Tian, Ye & Zhang, Chao & Huang, Haifeng & Shen, Jiale & Zhou, Xiong & Hu, Lian & Ma, Wensheng, 2024. "Experimental research on chemisorption energy storage performance for industrial waste heat recovery and conversion," Energy, Elsevier, vol. 309(C).
    5. Yan, T. & Wang, R.Z. & Li, T.X., 2018. "Experimental investigation on thermochemical heat storage using manganese chloride/ammonia," Energy, Elsevier, vol. 143(C), pages 562-574.
    6. Wu, S. & Li, T.X. & Yan, T. & Wang, R.Z., 2019. "Advanced thermochemical resorption heat transformer for high-efficiency energy storage and heat transformation," Energy, Elsevier, vol. 175(C), pages 1222-1233.
    7. Geilfuß, Kristina & Dawoud, Belal, 2020. "Analytical investigation of a zeolite-NaY-water adsorption heat and cold storage and its integration into a steam power process," Energy, Elsevier, vol. 195(C).
    8. Mukherjee, Ankit & Pujari, Ankush Shankar & Shinde, Shraddha Nitin & Kashyap, Uddip & Kumar, Lalit & Subramaniam, Chandramouli & Saha, Sandip K., 2022. "Performance assessment of open thermochemical energy storage system for seasonal space heating in highly humid environment," Renewable Energy, Elsevier, vol. 201(P1), pages 204-223.
    9. An, G.L. & Wang, L.W. & Gao, J., 2019. "Two-stage cascading desorption cycle for sorption thermal energy storage," Energy, Elsevier, vol. 174(C), pages 1091-1099.
    10. Serge Nyallang Nyamsi & Mykhaylo Lototskyy & Ivan Tolj, 2020. "Optimal Design of Combined Two-Tank Latent and Metal Hydrides-Based Thermochemical Heat Storage Systems for High-Temperature Waste Heat Recovery," Energies, MDPI, vol. 13(16), pages 1-18, August.
    11. Bennici, Simona & Dutournié, Patrick & Cathalan, Jérémy & Zbair, Mohamed & Nguyen, Minh Hoang & Scuiller, Elliot & Vaulot, Cyril, 2022. "Heat storage: Hydration investigation of MgSO4/active carbon composites, from material development to domestic applications scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Liu, Zijian & Lu, Ding & Tao, Shen & Chen, Rundong & Gong, Maoqiong, 2024. "Experimental study on using 85 °C low-grade heat to generate <120 °C steam by a temperature-distributed absorption heat transformer," Energy, Elsevier, vol. 299(C).
    13. Jun Li & Tao Zeng & Noriyuki Kobayashi & Haotai Xu & Yu Bai & Lisheng Deng & Zhaohong He & Hongyu Huang, 2019. "Lithium Hydroxide Reaction for Low Temperature Chemical Heat Storage: Hydration and Dehydration Reaction," Energies, MDPI, vol. 12(19), pages 1-13, September.
    14. Mikhail Tokarev, 2019. "A Double-Bed Adsorptive Heat Transformer for Upgrading Ambient Heat: Design and First Tests," Energies, MDPI, vol. 12(21), pages 1-14, October.
    15. Yang, Jiangming & Wu, Huijun & Xu, Xinhua & Huang, Gongsheng & Xu, Tao & Guo, Sitong & Liang, Yuying, 2019. "Numerical and experimental study on the thermal performance of aerogel insulating panels for building energy efficiency," Renewable Energy, Elsevier, vol. 138(C), pages 445-457.
    16. Courbon, Emilie & D'Ans, Pierre & Permyakova, Anastasia & Skrylnyk, Oleksandr & Steunou, Nathalie & Degrez, Marc & Frère, Marc, 2017. "A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability," Applied Energy, Elsevier, vol. 190(C), pages 1184-1194.
    17. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    18. Timothy Praditia & Thilo Walser & Sergey Oladyshkin & Wolfgang Nowak, 2020. "Improving Thermochemical Energy Storage Dynamics Forecast with Physics-Inspired Neural Network Architecture," Energies, MDPI, vol. 13(15), pages 1-26, July.
    19. Zeng, Yi & Clark, Ruby-Jean & Galazutdinova, Yana & Odukomaiya, Adewale & Al-Hallaj, Said & Farid, Mohammed & Kaur, Sumanjeet & Woods, Jason, 2024. "Open-cycle thermochemical energy storage for building space heating: Practical system configurations and effective energy density," Applied Energy, Elsevier, vol. 376(PA).
    20. Randeep Singh & Sadegh Sadeghi & Bahman Shabani, 2018. "Thermal Conductivity Enhancement of Phase Change Materials for Low-Temperature Thermal Energy Storage Applications," Energies, MDPI, vol. 12(1), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:229:y:2024:i:c:s096014812400764x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.