IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124005950.html
   My bibliography  Save this article

Impact of blending of phase change material for performance enhancement of solar energy storage

Author

Listed:
  • Shazad, Atif
  • Uzair, Muhammad
  • Tufail, Muhammad

Abstract

The contemporary challenge of energy scarcity underscores the vital necessity for effective energy storage solutions. Addressing this concern becomes particularly crucial given the abundance of solar energy available for harnessing. Thermal energy storage emerges as a pivotal approach in this context, with phase change materials serving as valuable components due to their affordability and widespread accessibility. Specifically, various inorganic salts find application as phase change materials, contributing to the development of cost-effective and readily available solutions for storing the ample energy derived from solar sources. This research assesses the impact of varying Sodium chloride (NaCl) proportions on the thermophysical properties of nitrate-based salts, specifically Sodium nitrate (NaNO3) and Potassium Nitrate (KNO3). The investigation reveals significant influences on latent heat, specific heat, and thermal conductivity. High levels of NaCl adversely impact the thermal properties, leading to a decrease in the latent heat of NaNO3 and KNO3 by 7.3 % and 4.4 %, respectively. This reduction resulted due to the disruption of the crystal structure caused by blending, which results in the initiation of melting at lower energy levels. Conversely, lower NaCl quantities, particularly 7.5 %, positively influence latent heat for both salts. Thermal conductivity and specific heat show enhancement with 7.5 % and 10 % NaCl, but further increases mitigate these properties. Microstructure analysis indicates that limited NaCl promotes a compact structure with strong bonding forces, while exceeding a threshold increases lattice vibration frequency. A network structure between NaNO3 and NaCl forms, becoming more compact and complex with increased NaCl content, impacting melting and solidification points. X-ray diffraction (XRD) analysis confirms the stability of both mixtures. The NaNO3–NaCl combination exhibits superior thermophysical properties compared to KNO3–NaCl, underscoring the importance of fine-tuning NaCl proportions for optimal performance in these salt mixtures.

Suggested Citation

  • Shazad, Atif & Uzair, Muhammad & Tufail, Muhammad, 2024. "Impact of blending of phase change material for performance enhancement of solar energy storage," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005950
    DOI: 10.1016/j.renene.2024.120530
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124005950
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.