IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics096014812400394x.html
   My bibliography  Save this article

Multi-objective prediction and optimization of performance of three-layer latent heat storage unit based on intermittent charging and discharging strategies

Author

Listed:
  • Zhang, Chenyu
  • Ma, Zhenjun
  • Qu, Zhiguo
  • Xu, Hongtao

Abstract

An intermittent heat charging and discharging strategy is proposed for on-demand thermal utilization in a three-layer latent heat storage unit filled with nanoparticle-enhanced phase change materials. To optimize the utilization ratio of phase change materials, and the stored and released thermal exergy amounts, a multi-objective prediction and optimization methodology combining orthogonal experimental design, range and variance analyses, multi-nonlinear regression models, and non-dominated sorting genetic algorithm-II is introduced while considering the variables of nanoparticle concentration, heat transfer fluid velocity, and intermittent time interval. Results show that the time interval presents the most significant influence. Multi-nonlinear regression models for the above three variables are established with determination factors of 0.9871, 0.9625, and 0.9253, respectively. The ultimate optimal results are 0.8, 57094.03 J, and 43066.73 J, achieved at the three variables of 44.37 min, 0.38 m s−1 and 8.99%, respectively. The maximum verification error of 5.11% indicates the reliability of this methodology. The methodology aims to enhance the overall performance of the three-layer latent heat storage system by mitigating the constraints associated with single-performance optimization.

Suggested Citation

  • Zhang, Chenyu & Ma, Zhenjun & Qu, Zhiguo & Xu, Hongtao, 2024. "Multi-objective prediction and optimization of performance of three-layer latent heat storage unit based on intermittent charging and discharging strategies," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s096014812400394x
    DOI: 10.1016/j.renene.2024.120329
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812400394X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120329?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s096014812400394x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.