IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v224y2024ics0960148124002416.html
   My bibliography  Save this article

Camellia sinensis leaf-assisted green synthesis of SO3H-functionalized ZnS/biochar nanocatalyst for highly selective solketal production and improved reusability in methylene blue dye adsorption

Author

Listed:
  • Yadav, Nidhi
  • Yadav, Gaurav
  • Ahmaruzzaman, Md.

Abstract

This study reports the successful synthesis of an acid-functionalized ZnS/Biochar (ZBC-SO3H) nanocatalyst through a co-precipitation method utilizing Camellia sinensis leaf extract. The ZBC-SO3H nanocatalyst was employed for the microwave-assisted acetalization reaction of glycerol with acetone for selective solketal synthesis (biofuel derivative). Through systematic optimization of multiple reaction parameters, the most favorable conditions for solketal synthesis were identified. The ideal reaction conditions involved an 8:1 M ratio of acetone to glycerol (AC to GL), a 6 wt% catalyst loading, an 8-min reaction time, and a temperature of 60 °C. A significantly high surface area of 326.21 m2/g for the ZBC-SO3H nanocatalyst demonstrates its exceptional potential for catalytic applications. In addition, the plausible reaction pathway for selective solketal synthesis was suggested. The catalyst was reusable up to 6 reaction runs in the solketal synthesis, which remarks the high stability of the ZBC-SO3H. Further, the reusability of the ZBC-SO3H (remaining catalyst after 6 runs) was examined in the adsorption of methylene blue (MB) dye. This groundbreaking study showcases the exceptional performance of the ZBC-SO3H nanocatalyst in selective solketal production and its remarkable reusability in the adsorption of methylene blue dye. The outstanding results underscore the novelty and significance of this research endeavor.

Suggested Citation

  • Yadav, Nidhi & Yadav, Gaurav & Ahmaruzzaman, Md., 2024. "Camellia sinensis leaf-assisted green synthesis of SO3H-functionalized ZnS/biochar nanocatalyst for highly selective solketal production and improved reusability in methylene blue dye adsorption," Renewable Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002416
    DOI: 10.1016/j.renene.2024.120176
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124002416
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.