IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v212y2023icp403-414.html
   My bibliography  Save this article

Evaluation of surplus hydroelectricity potential in Nepal until 2040 and its use for hydrogen production via electrolysis

Author

Listed:
  • Bhandari, Ramchandra
  • Subedi, Subodh

Abstract

The abundant hydro resources in Nepal have resulted in the generation of electricity almost exclusively from hydropower plants. Several hydropower plants are also currently under construction. There is no doubt that the surplus electricity will be significantly high in the coming years. Given the previous trend in electricity consumption, it will be a challenge to maximize the use of surplus electricity. In this work, the potential solutions to maximize the use of this surplus electricity have been analysed. Three approached are proposed: (i) increasing domestic electricity consumption by shifting the other energy use sectors to electricity, (ii) cross-border export of electricity, and (iii) conversion of electricity to hydrogen via electrolysis. The current state of energy demand and supply patterns in the country are presented. Future monthly demand forecasts and surplus electricity projections have been made. The hydrogen that can be produced with the surplus electricity via electrolysis is determined and an economic assessment is carried out for the produced hydrogen. The analysis of levelized cost of hydrogen (LCOH) under different scenarios resulted values ranging from 3.8 €/kg to 4.5 €/kg.

Suggested Citation

  • Bhandari, Ramchandra & Subedi, Subodh, 2023. "Evaluation of surplus hydroelectricity potential in Nepal until 2040 and its use for hydrogen production via electrolysis," Renewable Energy, Elsevier, vol. 212(C), pages 403-414.
  • Handle: RePEc:eee:renene:v:212:y:2023:i:c:p:403-414
    DOI: 10.1016/j.renene.2023.05.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123006857
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.05.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toghyani, S. & Afshari, E. & Baniasadi, E. & Atyabi, S.A. & Naterer, G.F., 2018. "Thermal and electrochemical performance assessment of a high temperature PEM electrolyzer," Energy, Elsevier, vol. 152(C), pages 237-246.
    2. Kothari, Richa & Buddhi, D. & Sawhney, R.L., 2008. "Comparison of environmental and economic aspects of various hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 553-563, February.
    3. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    4. Kato, Takeyoshi & Kubota, Mitsuhiro & Kobayashi, Noriyuki & Suzuoki, Yasuo, 2005. "Effective utilization of by-product oxygen from electrolysis hydrogen production," Energy, Elsevier, vol. 30(14), pages 2580-2595.
    5. Tika Ram Pokharel & Hom Bahadur Rijal, 2021. "Energy Transition toward Cleaner Energy Resources in Nepal," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    6. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    7. Ridjan, Iva & Mathiesen, Brian Vad & Connolly, David & Duić, Neven, 2013. "The feasibility of synthetic fuels in renewable energy systems," Energy, Elsevier, vol. 57(C), pages 76-84.
    8. Bhandari, Ramchandra & Shah, Ronak Rakesh, 2021. "Hydrogen as energy carrier: Techno-economic assessment of decentralized hydrogen production in Germany," Renewable Energy, Elsevier, vol. 177(C), pages 915-931.
    9. Marino, C. & Nucara, A. & Panzera, M.F. & Pietrafesa, M. & Varano, V., 2019. "Energetic and economic analysis of a stand alone photovoltaic system with hydrogen storage," Renewable Energy, Elsevier, vol. 142(C), pages 316-329.
    10. Parajuli, Ranjan & Østergaard, Poul Alberg & Dalgaard, Tommy & Pokharel, Govind Raj, 2014. "Energy consumption projection of Nepal: An econometric approach," Renewable Energy, Elsevier, vol. 63(C), pages 432-444.
    11. Gonzales Chavez, S & Xiberta Bernat, J & Llaneza Coalla, H, 1999. "Forecasting of energy production and consumption in Asturias (northern Spain)," Energy, Elsevier, vol. 24(3), pages 183-198.
    12. Olateju, Babatunde & Kumar, Amit, 2016. "A techno-economic assessment of hydrogen production from hydropower in Western Canada for the upgrading of bitumen from oil sands," Energy, Elsevier, vol. 115(P1), pages 604-614.
    13. Pelaez-Samaniego, Manuel Raul & Riveros-Godoy, Gustavo & Torres-Contreras, Santiago & Garcia-Perez, Tsai & Albornoz-Vintimilla, Esteban, 2014. "Production and use of electrolytic hydrogen in Ecuador towards a low carbon economy," Energy, Elsevier, vol. 64(C), pages 626-631.
    14. Gurung, Anup & Gurung, Om Prakash & Oh, Sang Eun, 2011. "The potential of a renewable energy technology for rural electrification in Nepal: A case study from Tangting," Renewable Energy, Elsevier, vol. 36(11), pages 3203-3210.
    15. Aneeque A. Mir & Mohammed Alghassab & Kafait Ullah & Zafar A. Khan & Yuehong Lu & Muhammad Imran, 2020. "A Review of Electricity Demand Forecasting in Low and Middle Income Countries: The Demand Determinants and Horizons," Sustainability, MDPI, vol. 12(15), pages 1-35, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Marcillo-Delgado, J.C. & Ortego, M.I. & Pérez-Foguet, A., 2019. "A compositional approach for modelling SDG7 indicators: Case study applied to electricity access," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 388-398.
    3. Bhandari, Ramchandra, 2022. "Green hydrogen production potential in West Africa – Case of Niger," Renewable Energy, Elsevier, vol. 196(C), pages 800-811.
    4. Mohammadi, Amin & Mehrpooya, Mehdi, 2018. "A comprehensive review on coupling different types of electrolyzer to renewable energy sources," Energy, Elsevier, vol. 158(C), pages 632-655.
    5. Malla, Sunil, 2022. "An outlook of end-use energy demand based on a clean energy and technology transformation of the household sector in Nepal," Energy, Elsevier, vol. 238(PB).
    6. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Sforzini, Matteo & de Santoli, Livio, 2022. "Technical, economic and environmental issues related to electrolysers capacity targets according to the Italian Hydrogen Strategy: A critical analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    8. Superchi, Francesco & Papi, Francesco & Mannelli, Andrea & Balduzzi, Francesco & Ferro, Francesco Maria & Bianchini, Alessandro, 2023. "Development of a reliable simulation framework for techno-economic analyses on green hydrogen production from wind farms using alkaline electrolyzers," Renewable Energy, Elsevier, vol. 207(C), pages 731-742.
    9. Laha, Priyanka & Chakraborty, Basab, 2017. "Energy model – A tool for preventing energy dysfunction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 95-114.
    10. Jasiński, Tomasz, 2022. "A new approach to modeling cycles with summer and winter demand peaks as input variables for deep neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. de Oliveira, Erick Meira & Cyrino Oliveira, Fernando Luiz, 2018. "Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods," Energy, Elsevier, vol. 144(C), pages 776-788.
    12. Tika Ram Pokharel & Hom Bahadur Rijal, 2021. "Energy Transition toward Cleaner Energy Resources in Nepal," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    13. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    14. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Ricciardi, Guido & de Santoli, Livio, 2023. "Smart energy systems for renewable energy communities: A comparative analysis of power-to-X strategies for improving energy self-consumption," Energy, Elsevier, vol. 280(C).
    15. Liu, Xuewei & Yuan, Zengwei & Xu, Yuan & Jiang, Songyan, 2017. "Greening cement in China: A cost-effective roadmap," Applied Energy, Elsevier, vol. 189(C), pages 233-244.
    16. Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2014. "Comprehensive modeling of tubular solid oxide electrolysis cell for co-electrolysis of steam and carbon dioxide," Energy, Elsevier, vol. 70(C), pages 420-434.
    17. Kothari, Richa & Singh, D.P. & Tyagi, V.V. & Tyagi, S.K., 2012. "Fermentative hydrogen production – An alternative clean energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2337-2346.
    18. Balcombe, Paul & Speirs, Jamie & Johnson, Erin & Martin, Jeanne & Brandon, Nigel & Hawkes, Adam, 2018. "The carbon credentials of hydrogen gas networks and supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1077-1088.
    19. Yukseltan, E. & Kok, A. & Yucekaya, A. & Bilge, A. & Aktunc, E. Agca & Hekimoglu, M., 2022. "The impact of the COVID-19 pandemic and behavioral restrictions on electricity consumption and the daily demand curve in Turkey," Utilities Policy, Elsevier, vol. 76(C).
    20. Lahimer, A.A. & Alghoul, M.A. & Yousif, Fadhil & Razykov, T.M. & Amin, N. & Sopian, K., 2013. "Research and development aspects on decentralized electrification options for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 314-324.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:212:y:2023:i:c:p:403-414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.