IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v211y2023icp76-86.html
   My bibliography  Save this article

A cascade neural network methodology for fault detection and diagnosis in solar thermal plants

Author

Listed:
  • Ruiz-Moreno, Sara
  • Gallego, Antonio J.
  • Sanchez, Adolfo J.
  • Camacho, Eduardo F.

Abstract

Detecting and isolating faults in collector fields of solar thermal power plants is a crucial and challenging task. The system variables in the collector area are highly coupled, which can lead to a high misclassification rate. For this reason, it becomes necessary to combine knowledge of systems engineering with machine learning techniques that unravel the complex dynamics that govern the systems using historical data. Furthermore, the performance of a solar thermal plant is highly dependent on solar irradiance which changes during the day and is subject to perturbations caused by clouds and other atmospheric conditions. Detecting the fault requires using techniques that cope with the disturbances in solar irradiance.

Suggested Citation

  • Ruiz-Moreno, Sara & Gallego, Antonio J. & Sanchez, Adolfo J. & Camacho, Eduardo F., 2023. "A cascade neural network methodology for fault detection and diagnosis in solar thermal plants," Renewable Energy, Elsevier, vol. 211(C), pages 76-86.
  • Handle: RePEc:eee:renene:v:211:y:2023:i:c:p:76-86
    DOI: 10.1016/j.renene.2023.04.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123005013
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.04.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Azam, Anam & Rafiq, Muhammad & Shafique, Muhammad & Zhang, Haonan & Yuan, Jiahai, 2021. "Analyzing the effect of natural gas, nuclear energy and renewable energy on GDP and carbon emissions: A multi-variate panel data analysis," Energy, Elsevier, vol. 219(C).
    2. Christian Janiesch & Patrick Zschech & Kai Heinrich, 2021. "Machine learning and deep learning," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 685-695, September.
    3. Ruiz-Moreno, Sara & Sanchez, Adolfo J. & Gallego, Antonio J. & Camacho, Eduardo F., 2022. "A deep learning-based strategy for fault detection and isolation in parabolic-trough collectors," Renewable Energy, Elsevier, vol. 186(C), pages 691-703.
    4. Correa-Jullian, Camila & Cardemil, José Miguel & López Droguett, Enrique & Behzad, Masoud, 2020. "Assessment of Deep Learning techniques for Prognosis of solar thermal systems," Renewable Energy, Elsevier, vol. 145(C), pages 2178-2191.
    5. Hussain, Muhammed & Dhimish, Mahmoud & Titarenko, Sofya & Mather, Peter, 2020. "Artificial neural network based photovoltaic fault detection algorithm integrating two bi-directional input parameters," Renewable Energy, Elsevier, vol. 155(C), pages 1272-1292.
    6. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yousri, Dalia & Babu, Thanikanti Sudhakar & Pachauri, Rupendra Kumar & Zeineldin, Hatem & El-Saadany, Ehab F., 2024. "A novel argyle puzzle for partial shading effect mitigation with experimental validation," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiz-Moreno, Sara & Sanchez, Adolfo J. & Gallego, Antonio J. & Camacho, Eduardo F., 2022. "A deep learning-based strategy for fault detection and isolation in parabolic-trough collectors," Renewable Energy, Elsevier, vol. 186(C), pages 691-703.
    2. Jen-Yu Lee & Tien-Thinh Nguyen & Hong-Giang Nguyen & Jen-Yao Lee, 2022. "Towards Predictive Crude Oil Purchase: A Case Study in the USA and Europe," Energies, MDPI, vol. 15(11), pages 1-15, May.
    3. Tomiwa Sunday Adebayo & Abraham Ayobamiji Awosusi & Seun Damola Oladipupo & Ephraim Bonah Agyekum & Arunkumar Jayakumar & Nallapaneni Manoj Kumar, 2021. "Dominance of Fossil Fuels in Japan’s National Energy Mix and Implications for Environmental Sustainability," IJERPH, MDPI, vol. 18(14), pages 1-20, July.
    4. Eduard Hartwich & Alexander Rieger & Johannes Sedlmeir & Dominik Jurek & Gilbert Fridgen, 2023. "Machine economies," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-13, December.
    5. Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
    6. Javier Felipe-Andreu & Antonio Valero & Alicia Valero, 2022. "Territorial Inequalities, Ecological and Material Footprints of the Energy Transition: Case Study of the Cantabrian-Mediterranean Bioregion," Land, MDPI, vol. 11(11), pages 1-22, October.
    7. Najla Alharbi & Bashayer Alkalifah & Ghaida Alqarawi & Murad A. Rassam, 2024. "Countering Social Media Cybercrime Using Deep Learning: Instagram Fake Accounts Detection," Future Internet, MDPI, vol. 16(10), pages 1-22, October.
    8. Rui Ma & Jia Wang & Wei Zhao & Hongjie Guo & Dongnan Dai & Yuliang Yun & Li Li & Fengqi Hao & Jinqiang Bai & Dexin Ma, 2022. "Identification of Maize Seed Varieties Using MobileNetV2 with Improved Attention Mechanism CBAM," Agriculture, MDPI, vol. 13(1), pages 1-16, December.
    9. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    10. Aleksandra Badora & Krzysztof Kud & Marian Woźniak, 2021. "Nuclear Energy Perception and Ecological Attitudes," Energies, MDPI, vol. 14(14), pages 1-18, July.
    11. Dylan Norbert Gono & Herlina Napitupulu & Firdaniza, 2023. "Silver Price Forecasting Using Extreme Gradient Boosting (XGBoost) Method," Mathematics, MDPI, vol. 11(18), pages 1-15, September.
    12. Udemba, Edmund Ntom & Tosun, Merve, 2022. "Moderating effect of institutional policies on energy and technology towards a better environment quality: A two dimensional approach to China's sustainable development," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    13. Kara Mostefa Khelil, Chérifa & Amrouche, Badia & Benyoucef, Abou soufiane & Kara, Kamel & Chouder, Aissa, 2020. "New Intelligent Fault Diagnosis (IFD) approach for grid-connected photovoltaic systems," Energy, Elsevier, vol. 211(C).
    14. Cheng Yang & Fuhao Sun & Yujie Zou & Zhipeng Lv & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Haoyang Cui, 2024. "A Survey of Photovoltaic Panel Overlay and Fault Detection Methods," Energies, MDPI, vol. 17(4), pages 1-37, February.
    15. Anca Gabriela Ilie & Marinela Luminita Emanuela Zlatea & Cristina Negreanu & Dan Dumitriu & Alma Pentescu, 2023. "Reliance on Russian Federation Energy Imports and Renewable Energy in the European Union," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(64), pages 780-780, August.
    16. Hong, Jichao & Li, Kerui & Liang, Fengwei & Yang, Haixu & Zhang, Chi & Yang, Qianqian & Wang, Jiegang, 2024. "A novel state of health prediction method for battery system in real-world vehicles based on gated recurrent unit neural networks," Energy, Elsevier, vol. 289(C).
    17. Shuai Sang & Lu Li, 2024. "A Novel Variant of LSTM Stock Prediction Method Incorporating Attention Mechanism," Mathematics, MDPI, vol. 12(7), pages 1-20, March.
    18. Elaine Aparecida Rodrigues & Maurício Lamano Ferreira & Amanda Rodrigues de Carvalho & José Oscar William Vega Bustillos & Rodrigo Antonio Braga Moraes Victor & Marcelo Gomes Sodré & Delvonei Alves de, 2022. "Land, Water, and Climate Issues in Large and Megacities under the Lens of Nuclear Science: An Approach for Achieving Sustainable Development Goal (SDG11)," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    19. Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
    20. Unterberger, Viktor & Lichtenegger, Klaus & Kaisermayer, Valentin & Gölles, Markus & Horn, Martin, 2021. "An adaptive short-term forecasting method for the energy yield of flat-plate solar collector systems," Applied Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:211:y:2023:i:c:p:76-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.