IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v208y2023icp577-582.html
   My bibliography  Save this article

Anaerobic digestion of recycled paper crumb and effects of digestate on concrete performance

Author

Listed:
  • Hurst, George
  • Ahmed, Ash
  • Taylor, Steven
  • Tedesco, Silvia

Abstract

Paper crumb (PC) is a type of paper sludge residue from the wastepaper recycling industry. It is a by-product from the various fiber purification stages that is particularly composed of short cellulose fibers, lignin, organic compounds and inorganic filler residues. Despite representing a reject material for the paper recycling sector, this feedstock can be turned into a bioresource to enable cross-sector industrial symbiosis in the form of a more sustainable concrete, hence an opportunity for novel Net Zero supply chains. This study sought to valorise the PC by the sequential anaerobic digestion to produce methane (CH4) from the organic compounds, followed by utilization of the digestate as a water replacement in concrete. The 21-day digestion of PC yielded 163 ml CH4 per gram volatile solids and the resulting digestate improved concrete compressive strength up to 50% water replacement grade, meeting the requirements for structural grade (C32/40) applications with substitution grades up to 50% and 25%, with and without the addition of plasticiser respectively. In a minor capacity, the digestate reduced workability of the concrete mix, however we demonstrate this issue can be resolved by the addition of plasticiser or increased water to cement ratios. The admixture addition is important to facilitate pumpability on site and ensure satisfactory compaction. This study highlights the potential of anaerobic digestate as a concrete supplement (additive), which would improve the sustainability of both the construction and the paper sector.

Suggested Citation

  • Hurst, George & Ahmed, Ash & Taylor, Steven & Tedesco, Silvia, 2023. "Anaerobic digestion of recycled paper crumb and effects of digestate on concrete performance," Renewable Energy, Elsevier, vol. 208(C), pages 577-582.
  • Handle: RePEc:eee:renene:v:208:y:2023:i:c:p:577-582
    DOI: 10.1016/j.renene.2023.03.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123003567
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.03.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tedesco, S. & Hurst, G. & Imtiaz, A. & Ratova, M. & Tosheva, L. & Kelly, P., 2020. "TiO2 supported natural zeolites as biogas enhancers through photocatalytic pre-treatment of Miscanthus x giganteous crops," Energy, Elsevier, vol. 205(C).
    2. Simona Di Fraia & M. Rakib Uddin, 2022. "Energy Recovery from Waste Paper and Deinking Sludge to Support the Demand of the Paper Industry: A Numerical Analysis," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    3. Tedesco, S. & Daniels, S., 2019. "Evaluation of inoculum acclimatation and biochemical seasonal variation for the production of renewable gaseous fuel from biorefined Laminaria sp. waste streams," Renewable Energy, Elsevier, vol. 139(C), pages 1-8.
    4. Lou, Rui & Wu, Shubin & Lv, Gaojin & Yang, Qing, 2012. "Energy and resource utilization of deinking sludge pyrolysis," Applied Energy, Elsevier, vol. 90(1), pages 46-50.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enrique Salgado-Hernández & Ángel Isauro Ortiz-Ceballos & Sergio Martínez-Hernández & Erik Samuel Rosas-Mendoza & Ana Elena Dorantes-Acosta & Andrea Alvarado-Vallejo & Alejandro Alvarado-Lassman, 2022. "Methane Production of Sargassum spp. Biomass from the Mexican Caribbean: Solid–Liquid Separation and Component Distribution," IJERPH, MDPI, vol. 20(1), pages 1-13, December.
    2. Ning-Yi Wang & Chun-Hao Shih & Pei-Te Chiueh & Yu-Fong Huang, 2013. "Environmental Effects of Sewage Sludge Carbonization and Other Treatment Alternatives," Energies, MDPI, vol. 6(2), pages 1-13, February.
    3. Xie, Candie & Liu, Jingyong & Zhang, Xiaochun & Xie, Wuming & Sun, Jian & Chang, Kenlin & Kuo, Jiahong & Xie, Wenhao & Liu, Chao & Sun, Shuiyu & Buyukada, Musa & Evrendilek, Fatih, 2018. "Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks," Applied Energy, Elsevier, vol. 212(C), pages 786-795.
    4. Bousios, Spyridon & Worrell, Ernst, 2017. "Towards a Multiple Input-Multiple Output paper mill: Opportunities for alternative raw materials and sidestream valorisation in the paper and board industry," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 218-232.
    5. Ma, Shuaishuai & Li, Yuling & Li, Jingxue & Yu, Xiaona & Cui, Zongjun & Yuan, Xufeng & Zhu, Wanbin & Wang, Hongliang, 2022. "Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    6. Cordiner, S. & De Simone, G. & Mulone, V., 2012. "Experimental–numerical design of a biomass bubbling fluidized bed gasifier for paper sludge energy recovery," Applied Energy, Elsevier, vol. 97(C), pages 532-542.
    7. Faubert, Patrick & Barnabé, Simon & Bouchard, Sylvie & Côté, Richard & Villeneuve, Claude, 2016. "Pulp and paper mill sludge management practices: What are the challenges to assess the impacts on greenhouse gas emissions?," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 107-133.
    8. Alberto Carotenuto & Simona Di Fraia & Nicola Massarotti & Szymon Sobek & M. Rakib Uddin & Laura Vanoli & Sebastian Werle, 2023. "Sewage Sludge Gasification Process Optimization for Combined Heat and Power Generation," Energies, MDPI, vol. 16(12), pages 1-22, June.
    9. Carotenuto, Alberto & Di Fraia, Simona & Massarotti, Nicola & Sobek, Szymon & Uddin, M. Rakib & Vanoli, Laura & Werle, Sebastian, 2023. "Predictive modeling for energy recovery from sewage sludge gasification," Energy, Elsevier, vol. 263(PB).
    10. Chen, Hui & Chen, Dezhen & Hong, Liu, 2015. "Influences of activation agent impregnated sewage sludge pyrolysis on emission characteristics of volatile combustion and De-NOx performance of activated char," Applied Energy, Elsevier, vol. 156(C), pages 767-775.
    11. Wang, Shule & Wen, Yuming & Hammarström, Henry & Jönsson, Pär Göran & Yang, Weihong, 2021. "Pyrolysis behaviour, kinetics and thermodynamic data of hydrothermal carbonization–Treated pulp and paper mill sludge," Renewable Energy, Elsevier, vol. 177(C), pages 1282-1292.
    12. Tedesco, S. & Hurst, G. & Imtiaz, A. & Ratova, M. & Tosheva, L. & Kelly, P., 2020. "TiO2 supported natural zeolites as biogas enhancers through photocatalytic pre-treatment of Miscanthus x giganteous crops," Energy, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:208:y:2023:i:c:p:577-582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.