IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2022i1p219-d1012844.html
   My bibliography  Save this article

Methane Production of Sargassum spp. Biomass from the Mexican Caribbean: Solid–Liquid Separation and Component Distribution

Author

Listed:
  • Enrique Salgado-Hernández

    (Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa 91090, Mexico)

  • Ángel Isauro Ortiz-Ceballos

    (Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa 91090, Mexico)

  • Sergio Martínez-Hernández

    (Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa 91090, Mexico)

  • Erik Samuel Rosas-Mendoza

    (CONACYT-Tecnológico Nacional de México/Instituto Tecnológico de Orizaba, Av. Oriente 9, 852. Col. Emiliano Zapata, Orizaba 94320, Mexico)

  • Ana Elena Dorantes-Acosta

    (Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa 91090, Mexico)

  • Andrea Alvarado-Vallejo

    (División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Orizaba, Orizaba 94320, Mexico)

  • Alejandro Alvarado-Lassman

    (División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Orizaba, Orizaba 94320, Mexico)

Abstract

In the last decade, Sargassum spp. seaweed species have caused massive flooding on the Caribbean Sea coasts. These seaweed species have a high content of recalcitrant compounds, such as insoluble fibers and polyphenols, which generate low methane yields in anaerobic digestion (AD). This study investigated the effect of solid–liquid separation of Sargassum biomass on biodegradability and methane yield. A biochemical methane potential (BMP) test was conducted with both fractions and raw biomass (RB). A mass balance was developed to assess the distribution of the components. The obtained liquid fraction (LF) showed high biodegradability and a high methane production rate, and it generated a methane yield of 159.7 ± 7.1 N L kg VS −1 , a value that corresponds to approximately twice that achieved with RB and the solid fraction (SF). The component distribution analysis showed that about 90% of total solids (TS), volatile solids (VS), ash, carbon, and cellulose were retained in the SF. In conclusion, the LF had high biodegradability and methane yield. This suggests the potential for LFs of Sargassum biomass to be treated in large-scale high-load reactors; however, studies applied to SFs are needed because they retain a large amount of organic matter with low biodegradability.

Suggested Citation

  • Enrique Salgado-Hernández & Ángel Isauro Ortiz-Ceballos & Sergio Martínez-Hernández & Erik Samuel Rosas-Mendoza & Ana Elena Dorantes-Acosta & Andrea Alvarado-Vallejo & Alejandro Alvarado-Lassman, 2022. "Methane Production of Sargassum spp. Biomass from the Mexican Caribbean: Solid–Liquid Separation and Component Distribution," IJERPH, MDPI, vol. 20(1), pages 1-13, December.
  • Handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:219-:d:1012844
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/1/219/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/1/219/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John James Milledge & Supattra Maneein & Elena Arribas López & Debbie Bartlett, 2020. "Sargassum Inundations in Turks and Caicos: Methane Potential and Proximate, Ultimate, Lipid, Amino Acid, Metal and Metalloid Analyses," Energies, MDPI, vol. 13(6), pages 1-27, March.
    2. Montingelli, M.E. & Benyounis, K.Y. & Quilty, B. & Stokes, J. & Olabi, A.G., 2017. "Influence of mechanical pretreatment and organic concentration of Irish brown seaweed for methane production," Energy, Elsevier, vol. 118(C), pages 1079-1089.
    3. John J. Milledge & Benjamin Smith & Philip W. Dyer & Patricia Harvey, 2014. "Macroalgae-Derived Biofuel: A Review of Methods of Energy Extraction from Seaweed Biomass," Energies, MDPI, vol. 7(11), pages 1-29, November.
    4. Tedesco, S. & Daniels, S., 2019. "Evaluation of inoculum acclimatation and biochemical seasonal variation for the production of renewable gaseous fuel from biorefined Laminaria sp. waste streams," Renewable Energy, Elsevier, vol. 139(C), pages 1-8.
    5. Allen, Eoin & Wall, David M. & Herrmann, Christiane & Xia, Ao & Murphy, Jerry D., 2015. "What is the gross energy yield of third generation gaseous biofuel sourced from seaweed?," Energy, Elsevier, vol. 81(C), pages 352-360.
    6. McKennedy, Janet & Sherlock, Orla, 2015. "Anaerobic digestion of marine macroalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1781-1790.
    7. Ma, Shuaishuai & Wang, Hongliang & Li, Jingxue & Fu, Yu & Zhu, Wanbin, 2019. "Methane production performances of different compositions in lignocellulosic biomass through anaerobic digestion," Energy, Elsevier, vol. 189(C).
    8. Raúl Tapia-Tussell & Julio Avila-Arias & Jorge Domínguez Maldonado & David Valero & Edgar Olguin-Maciel & Daisy Pérez-Brito & Liliana Alzate-Gaviria, 2018. "Biological Pretreatment of Mexican Caribbean Macroalgae Consortiums Using Bm-2 Strain ( Trametes hirsuta ) and Its Enzymatic Broth to Improve Biomethane Potential," Energies, MDPI, vol. 11(3), pages 1-11, February.
    9. John J. Milledge & Birthe V. Nielsen & Supattra Maneein & Patricia J. Harvey, 2019. "A Brief Review of Anaerobic Digestion of Algae for Bioenergy," Energies, MDPI, vol. 12(6), pages 1-22, March.
    10. Thompson, T.M. & Young, B.R. & Baroutian, S., 2020. "Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John James Milledge & Supattra Maneein & Elena Arribas López & Debbie Bartlett, 2020. "Sargassum Inundations in Turks and Caicos: Methane Potential and Proximate, Ultimate, Lipid, Amino Acid, Metal and Metalloid Analyses," Energies, MDPI, vol. 13(6), pages 1-27, March.
    2. Yiru Zhao & Nathalie Bourgougnon & Jean-Louis Lanoisellé & Thomas Lendormi, 2022. "Biofuel Production from Seaweeds: A Comprehensive Review," Energies, MDPI, vol. 15(24), pages 1-34, December.
    3. Kouhgardi, Esmaeil & Zendehboudi, Sohrab & Mohammadzadeh, Omid & Lohi, Ali & Chatzis, Ioannis, 2023. "Current status and future prospects of biofuel production from brown algae in North America: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    4. John J. Milledge & Birthe V. Nielsen & Supattra Maneein & Patricia J. Harvey, 2019. "A Brief Review of Anaerobic Digestion of Algae for Bioenergy," Energies, MDPI, vol. 12(6), pages 1-22, March.
    5. Deng, Chen & Lin, Richen & Kang, Xihui & Wu, Benteng & O’Shea, Richard & Murphy, Jerry D., 2020. "Improving gaseous biofuel yield from seaweed through a cascading circular bioenergy system integrating anaerobic digestion and pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    6. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Eun-Young Park & Jung-Kyu Park, 2021. "Sequential Hydrothermal HCl Pretreatment and Enzymatic Hydrolysis of Saccharina japonica Biomass," Energies, MDPI, vol. 14(23), pages 1-9, December.
    8. Rivera-Hernández, Yessica & Hernández-Eugenio, Guadalupe & Balagurusamy, Nagamani & Espinosa-Solares, Teodoro, 2022. "Sargassum-pig manure co-digestion: An alternative for bioenergy production and treating a polluting coastal waste," Renewable Energy, Elsevier, vol. 199(C), pages 1336-1344.
    9. Kumar, Kanhaiya & Ghosh, Supratim & Angelidaki, Irini & Holdt, Susan L. & Karakashev, Dimitar B. & Morales, Merlin Alvarado & Das, Debabrata, 2016. "Recent developments on biofuels production from microalgae and macroalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 235-249.
    10. Tedesco, S. & Daniels, S., 2018. "Optimisation of biogas generation from brown seaweed residues: Compositional and geographical parameters affecting the viability of a biorefinery concept," Applied Energy, Elsevier, vol. 228(C), pages 712-723.
    11. Tabassum, Muhammad Rizwan & Xia, Ao & Murphy, Jerry D., 2017. "Comparison of pre-treatments to reduce salinity and enhance biomethane yields of Laminaria digitata harvested in different seasons," Energy, Elsevier, vol. 140(P1), pages 546-551.
    12. Cristiane Bueno & João Adriano Rossignolo & Letícia Missiatto Gavioli & Camila Cassola Assunção Sposito & Fernando Gustavo Tonin & Mariana Matera Veras & Maria Júlia Bassan de Moraes & Gabriela Pitoll, 2023. "Life Cycle Assessment Applied to End-of-Life Scenarios of Sargassum spp. for Application in Civil Construction," Sustainability, MDPI, vol. 15(7), pages 1-23, April.
    13. Thompson, T.M. & Young, B.R. & Baroutian, S., 2020. "Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    14. Karami, Kavosh & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora & Kumar, Rajeev, 2022. "Mesophilic aerobic digestion: An efficient and inexpensive biological pretreatment to improve biogas production from highly-recalcitrant pinewood," Energy, Elsevier, vol. 239(PE).
    15. Zane Vincevica-Gaile & Varvara Sachpazidou & Valdis Bisters & Maris Klavins & Olga Anne & Inga Grinfelde & Emil Hanc & William Hogland & Muhammad Asim Ibrahim & Yahya Jani & Mait Kriipsalu & Divya Pal, 2022. "Applying Macroalgal Biomass as an Energy Source: Utility of the Baltic Sea Beach Wrack for Thermochemical Conversion," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    16. Nassef, Ahmed M. & Olabi, A.G. & Rodriguez, Cristina & Abdelkareem, Mohammad Ali & Rezk, Hegazy, 2021. "Optimal operating parameter determination and modeling to enhance methane production from macroalgae," Renewable Energy, Elsevier, vol. 163(C), pages 2190-2197.
    17. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    18. Apip Amrullah & Obie Farobie & Asep Bayu & Novi Syaftika & Edy Hartulistiyoso & Navid R. Moheimani & Surachai Karnjanakom & Yukihiko Matsumura, 2022. "Slow Pyrolysis of Ulva lactuca (Chlorophyta) for Sustainable Production of Bio-Oil and Biochar," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    19. Allen, Eoin & Wall, David M. & Herrmann, Christiane & Murphy, Jerry D., 2016. "A detailed assessment of resource of biomethane from first, second and third generation substrates," Renewable Energy, Elsevier, vol. 87(P1), pages 656-665.
    20. Chung-Yiin Wong & Siti-Suhailah Rosli & Yoshimitsu Uemura & Yeek Chia Ho & Arunsri Leejeerajumnean & Worapon Kiatkittipong & Chin-Kui Cheng & Man-Kee Lam & Jun-Wei Lim, 2019. "Potential Protein and Biodiesel Sources from Black Soldier Fly Larvae: Insights of Larval Harvesting Instar and Fermented Feeding Medium," Energies, MDPI, vol. 12(8), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:219-:d:1012844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.