IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v206y2023icp47-59.html
   My bibliography  Save this article

Molecular insights into dissolution of lignin bunch in ionic liquid-water mixture for enhanced biomass conversion

Author

Listed:
  • Radhakrishnan, Rokesh
  • Manna, Bharat
  • Ghosh, Amit

Abstract

Globally, the shift towards lignocellulosic biorefinery has opened avenues for valorizing lignin, a majorly accumulated recalcitrant by-product. A targeted lignin processing by ionic liquid-cosolvent mixtures can be an effective biomass conversion strategy. An understanding of lignin-ionic liquid dissolution can enable in designing a significant lignin processing technique to synthesis lignin-based renewable products. Here, we explored the molecular interaction during the dissolution of lignin containing five guaiacyl decamer chains in various (1-Ethyl-3-Methylimidazolium Acetate) EmimOAc-water mixtures using molecular dynamics simulation. The analysis showed that in only water, lignin formed a compact aggregate. Nevertheless, in 50%, 80%, and 100% EmimOAc-water, lignin underwent a segregated chain disentanglement with widespread dynamic motion. A detailed multifaceted analysis of Emim+, OAc− and water distribution on the polar and non-polar sites of lignin units was illustrated. An effective lignin dissolution was observed for 50% and 80% EmimOAc-water systems. The OAc− distribution was stronger around lignin's alkyl chains and alcoholic hydroxy groups. The Emim+ tails significantly impacted the benzene ring, whereas Emim+ heads were distributed around methoxy and hydroxy groups. Altogether, this study explores the lignin dissolution at atomistic level in EmimOAc-water mixtures; these understanding could serve as a cornerstone for engineering new ionic liquid-mediated lignin biorefinery.

Suggested Citation

  • Radhakrishnan, Rokesh & Manna, Bharat & Ghosh, Amit, 2023. "Molecular insights into dissolution of lignin bunch in ionic liquid-water mixture for enhanced biomass conversion," Renewable Energy, Elsevier, vol. 206(C), pages 47-59.
  • Handle: RePEc:eee:renene:v:206:y:2023:i:c:p:47-59
    DOI: 10.1016/j.renene.2023.02.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123001817
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.02.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nis, Berna & Kaya Ozsel, Burcak, 2021. "Efficient direct conversion of lignocellulosic biomass into biobased platform chemicals in ionic liquid-water medium," Renewable Energy, Elsevier, vol. 169(C), pages 1051-1057.
    2. Zhu, Chen & Cao, Jing-Pei & Feng, Xiao-Bo & Zhao, Xiao-Yan & Yang, Zhen & Li, Jun & Zhao, Ming & Zhao, Yun-Peng & Bai, Hong-Cun, 2021. "Theoretical insight into the hydrogenolysis mechanism of lignin dimer compounds based on experiments," Renewable Energy, Elsevier, vol. 163(C), pages 1831-1837.
    3. Dávila, Izaskun & Gullón, Beatriz & Labidi, Jalel & Gullón, Patricia, 2019. "Multiproduct biorefinery from vine shoots: Bio-ethanol and lignin production," Renewable Energy, Elsevier, vol. 142(C), pages 612-623.
    4. Biswas, Bijoy & Kumar, Avnish & Krishna, Bhavya B. & Bhaskar, Thallada, 2021. "Effects of solid base catalysts on depolymerization of alkali lignin for the production of phenolic monomer compounds," Renewable Energy, Elsevier, vol. 175(C), pages 270-280.
    5. Pin, Thaynara C. & Nascimento, Viviane M. & Costa, Aline C. & Pu, Yunqiao & Ragauskas, Arthur J. & Rabelo, Sarita C., 2020. "Structural characterization of sugarcane lignins extracted from different protic ionic liquid pretreatments," Renewable Energy, Elsevier, vol. 161(C), pages 579-592.
    6. Abdolmaleki, Amir & Nabavizadeh, Sayed Sajad & Badbedast, Mehran, 2021. "1-(Carboxymethyl)pyridinium chloride as an acidic ionic liquid for rice straw effective pretreatment," Renewable Energy, Elsevier, vol. 177(C), pages 544-553.
    7. Zhang, Quanguo & Hu, Jianjun & Lee, Duu-Jong, 2017. "Pretreatment of biomass using ionic liquids: Research updates," Renewable Energy, Elsevier, vol. 111(C), pages 77-84.
    8. Radhakrishnan, Rokesh & Patra, Pradipta & Das, Manali & Ghosh, Amit, 2021. "Recent advancements in the ionic liquid mediated lignin valorization for the production of renewable materials and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aghili Mehrizi, Amirreza & Tangestaninejad, Shahram & Denayer, Joeri F.M. & Karimi, Keikhosro & Shafiei, Marzieh, 2023. "The critical impacts of anion and cosolvent on morpholinium ionic liquid pretreatment for efficient renewable energy production from triticale straw," Renewable Energy, Elsevier, vol. 202(C), pages 686-698.
    2. Biswas, Bijoy & Kumar, Avnish & Krishna, Bhavya B. & Bhaskar, Thallada, 2021. "Effects of solid base catalysts on depolymerization of alkali lignin for the production of phenolic monomer compounds," Renewable Energy, Elsevier, vol. 175(C), pages 270-280.
    3. Garita-Cambronero, Jerson & Paniagua-García, Ana I. & Hijosa-Valsero, María & Díez-Antolínez, Rebeca, 2021. "Biobutanol production from pruned vine shoots," Renewable Energy, Elsevier, vol. 177(C), pages 124-133.
    4. Radhakrishnan, Rokesh & Patra, Pradipta & Das, Manali & Ghosh, Amit, 2021. "Recent advancements in the ionic liquid mediated lignin valorization for the production of renewable materials and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Wu, Bo & Wang, Yan-Wei & Dai, Yong-Hua & Song, Chao & Zhu, Qi-Li & Qin, Han & Tan, Fu-Rong & Chen, Han-Cheng & Dai, Li-Chun & Hu, Guo-Quan & He, Ming-Xiong, 2021. "Current status and future prospective of bio-ethanol industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Chu, Qiulu & Tong, Wenyao & Wu, Shufang & Jin, Yongcan & Hu, Jinguang & Song, Kai, 2021. "Modification of lignin by various additives to mitigate lignin inhibition for improved enzymatic digestibility of dilute acid pretreated hardwood," Renewable Energy, Elsevier, vol. 177(C), pages 992-1000.
    7. Patricia Portero-Barahona & Enrique Javier Carvajal-Barriga & Jesús Martín-Gil & Pablo Martín-Ramos, 2019. "Sugarcane Bagasse Hydrolysis Enhancement by Microwave-Assisted Sulfolane Pretreatment," Energies, MDPI, vol. 12(9), pages 1-15, May.
    8. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    9. Halder, Pobitra & Kundu, Sazal & Patel, Savankumar & Setiawan, Adi & Atkin, Rob & Parthasarthy, Rajarathinam & Paz-Ferreiro, Jorge & Surapaneni, Aravind & Shah, Kalpit, 2019. "Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 268-292.
    10. Hashemi, Seyed Sajad & Mirmohamadsadeghi, Safoora & Karimi, Keikhosro, 2020. "Biorefinery development based on whole safflower plant," Renewable Energy, Elsevier, vol. 152(C), pages 399-408.
    11. Sun, Yingqiang & Xu, Chunyan & Igou, Thomas & Liu, Peilu & Hu, Zixuan & Van Ginkel, Steven W. & Chen, Yongsheng, 2018. "Effect of water content on [Bmim][HSO4] assisted in-situ transesterification of wet Nannochloropsis oceanica," Applied Energy, Elsevier, vol. 226(C), pages 461-468.
    12. Bains, Rohit & Kumar, Ajay & Chauhan, Arvind Singh & Das, Pralay, 2022. "Dimethyl carbonate solvent assisted efficient conversion of lignocellulosic biomass to 5- hydroxymethylfurfural and furfural," Renewable Energy, Elsevier, vol. 197(C), pages 237-243.
    13. Chen, Minzi & Zhang, Shuping & Su, Yinhai & Niu, Xin & Zhu, Shuguang & Liu, Xinzhi, 2022. "Catalytic co-pyrolysis of food waste digestate and corn husk with CaO catalyst for upgrading bio-oil," Renewable Energy, Elsevier, vol. 186(C), pages 105-114.
    14. Weldemhret, Teklebrahan G. & Bañares, Angelo B. & Ramos, Kristine Rose M. & Lee, Won-Keun & Nisola, Grace M. & Valdehuesa, Kris Niño G. & Chung, Wook-Jin, 2020. "Current advances in ionic liquid-based pre-treatment and depolymerization of macroalgal biomass," Renewable Energy, Elsevier, vol. 152(C), pages 283-299.
    15. Liu, Yichen & Wang, Yue & Fu, Xing & Li, Qiuxing & Wang, Wenli & Hu, Changwei, 2021. "Effect of MgCl2 solution pretreatment on pubescens conversion at room temperature," Renewable Energy, Elsevier, vol. 171(C), pages 287-298.
    16. Xu, Jikun & Hou, Huijie & Hu, Jingping & Liu, Bingchuan, 2018. "Coupling of hydrothermal and ionic liquid pretreatments for sequential biorefinery of Tamarix austromongolica," Applied Energy, Elsevier, vol. 229(C), pages 745-755.
    17. Wu, Haijun & Li, Xinlong & Zhang, Quan & Zhang, Kai & Xu, Xia & Xu, Jian, 2022. "Promoting the conversion of poplar to bio-oil based on the synergistic effect of alkaline hydrogen peroxide," Renewable Energy, Elsevier, vol. 192(C), pages 107-117.
    18. Dominik Anđelini & Danko Cvitan & Melissa Prelac & Igor Pasković & Marko Černe & Ivan Nemet & Nikola Major & Smiljana Goreta Ban & Zoran Užila & Tea Zubin Ferri & Branka Njegić Džakula & Marko Petek &, 2023. "Biochar from Grapevine-Pruning Residues Is Affected by Grapevine Rootstock and Pyrolysis Temperature," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
    19. Kumar, Avnish & Biswas, Bijoy & Saini, Komal & Kumar, Adarsh & Kumar, Jitendra & Krishna, Bhavya B. & Bhaskar, Thallada, 2021. "Py-GC/MS study of prot lignin with cobalt impregnated titania, ceria and zirconia catalysts," Renewable Energy, Elsevier, vol. 172(C), pages 121-129.
    20. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:206:y:2023:i:c:p:47-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.