IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v142y2019icp612-623.html
   My bibliography  Save this article

Multiproduct biorefinery from vine shoots: Bio-ethanol and lignin production

Author

Listed:
  • Dávila, Izaskun
  • Gullón, Beatriz
  • Labidi, Jalel
  • Gullón, Patricia

Abstract

Vine shoots were hydrothermally processed and the effect of the different assayed severities on the subsequent enzymatic saccharification of the remaining solids was evaluated. The solid obtained at a severity of 4.47 showed the highest yield on glucose (74.01%) and therefore, it was used as the substrate for the obtaining of bio-ethanol through a SSF process. Under the evaluated conditions (LSR 10 g/g, 20 FPU/g and 10 IU/FPU) 13.3 g/L of bio-ethanol were produced (corresponding to 67.4% of ethanol conversion). Moreover, lignin has been extracted by an alkali delignification treatment from the vine shoots unprocessing and from the solids resulting from the stages of the proposed biorefinery scheme, which were the autohydrolysed vine shoots and the bio-ethanol residue. The isolated lignins were characterized by HPLC, total phenolic content, FTIR, HPSEC, Py-GC/MS and TGA and it was observed that the successive stages of processing to which the vine shoots were submitted provoked chemical and structural changes in the extracted lignins. The knowledge of the structural modifications that the lignin present in the vine shoots during the autohydrolysis and the SSF process could help determining at which stage of the bio-ethanol production would be suitable to recover the lignin for value-added applications.

Suggested Citation

  • Dávila, Izaskun & Gullón, Beatriz & Labidi, Jalel & Gullón, Patricia, 2019. "Multiproduct biorefinery from vine shoots: Bio-ethanol and lignin production," Renewable Energy, Elsevier, vol. 142(C), pages 612-623.
  • Handle: RePEc:eee:renene:v:142:y:2019:i:c:p:612-623
    DOI: 10.1016/j.renene.2019.04.131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119306159
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.04.131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Domínguez, Elena & Romaní, Aloia & Domingues, Lucília & Garrote, Gil, 2017. "Evaluation of strategies for second generation bioethanol production from fast growing biomass Paulownia within a biorefinery scheme," Applied Energy, Elsevier, vol. 187(C), pages 777-789.
    2. Favaro, Lorenzo & Basaglia, Marina & van Zyl, Willem H. & Casella, Sergio, 2013. "Using an efficient fermenting yeast enhances ethanol production from unfiltered wheat bran hydrolysates," Applied Energy, Elsevier, vol. 102(C), pages 170-178.
    3. Sarkar, Nibedita & Ghosh, Sumanta Kumar & Bannerjee, Satarupa & Aikat, Kaustav, 2012. "Bioethanol production from agricultural wastes: An overview," Renewable Energy, Elsevier, vol. 37(1), pages 19-27.
    4. Egüés, I. & Serrano, L. & Amendola, D. & De Faveri, D.M. & Spigno, G. & Labidi, J., 2013. "Fermentable sugars recovery from grape stalks for bioethanol production," Renewable Energy, Elsevier, vol. 60(C), pages 553-558.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominik Anđelini & Danko Cvitan & Melissa Prelac & Igor Pasković & Marko Černe & Ivan Nemet & Nikola Major & Smiljana Goreta Ban & Zoran Užila & Tea Zubin Ferri & Branka Njegić Džakula & Marko Petek &, 2023. "Biochar from Grapevine-Pruning Residues Is Affected by Grapevine Rootstock and Pyrolysis Temperature," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
    2. Hashemi, Seyed Sajad & Mirmohamadsadeghi, Safoora & Karimi, Keikhosro, 2020. "Biorefinery development based on whole safflower plant," Renewable Energy, Elsevier, vol. 152(C), pages 399-408.
    3. Sebastián Serna-Loaiza & Angela Miltner & Martin Miltner & Anton Friedl, 2019. "A Review on the Feedstocks for the Sustainable Production of Bioactive Compounds in Biorefineries," Sustainability, MDPI, vol. 11(23), pages 1-24, November.
    4. Garita-Cambronero, Jerson & Paniagua-García, Ana I. & Hijosa-Valsero, María & Díez-Antolínez, Rebeca, 2021. "Biobutanol production from pruned vine shoots," Renewable Energy, Elsevier, vol. 177(C), pages 124-133.
    5. Radhakrishnan, Rokesh & Manna, Bharat & Ghosh, Amit, 2023. "Molecular insights into dissolution of lignin bunch in ionic liquid-water mixture for enhanced biomass conversion," Renewable Energy, Elsevier, vol. 206(C), pages 47-59.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Younho & Cho, Eun Jin & Park, Chan Song & Oh, Chi Hoon & Park, Bok-Jae & Bae, Hyeun-Jong, 2019. "A strategy for sequential fermentation by Saccharomyces cerevisiae and Pichia stipitis in bioethanol production from hardwoods," Renewable Energy, Elsevier, vol. 139(C), pages 1281-1289.
    2. Kuo, Yen-Ting & Chen, Ju-Shiou & Yang, Tzu-Yueh & Wan, Hou-Peng, 2018. "Technical and Economic approach of bioethanol production from nanofiltration of biomass chemical hydrolysis solutions," Applied Energy, Elsevier, vol. 215(C), pages 426-436.
    3. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    4. Kacper Świechowski & Marek Liszewski & Przemysław Bąbelewski & Jacek A. Koziel & Andrzej Białowiec, 2019. "Fuel Properties of Torrefied Biomass from Pruning of Oxytree," Data, MDPI, vol. 4(2), pages 1-10, April.
    5. Taghizadeh-Alisaraei, Ahmad & Assar, Hossein Alizadeh & Ghobadian, Barat & Motevali, Ali, 2017. "Potential of biofuel production from pistachio waste in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 510-522.
    6. Chepeliev, Maksym & Diachuk, Oleksandr & Podolets, Roman & Trypolska, Galyna, 2021. "The role of bioenergy in Ukraine's climate mitigation policy by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    8. Maria Alexandropoulou & Georgia Antonopoulou & Ioanna Ntaikou & Gerasimos Lyberatos, 2017. "Fungal Pretreatment of Willow Sawdust with Abortiporus biennis for Anaerobic Digestion: Impact of an External Nitrogen Source," Sustainability, MDPI, vol. 9(1), pages 1-14, January.
    9. Battista, Federico & Mancini, Giuseppe & Ruggeri, Bernardo & Fino, Debora, 2016. "Selection of the best pretreatment for hydrogen and bioethanol production from olive oil waste products," Renewable Energy, Elsevier, vol. 88(C), pages 401-407.
    10. Feng, Junfeng & Yang, Zhongzhi & Hse, Chung-yun & Su, Qiuli & Wang, Kui & Jiang, Jianchun & Xu, Junming, 2017. "In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading," Renewable Energy, Elsevier, vol. 105(C), pages 140-148.
    11. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    12. Mertzanis, Charilaos, 2018. "Institutions, development and energy constraints," Energy, Elsevier, vol. 142(C), pages 962-982.
    13. Guragain, Yadhu N. & Wang, Donghai & Vadlani, Praveen V., 2016. "Appropriate biorefining strategies for multiple feedstocks: Critical evaluation for pretreatment methods, and hydrolysis with high solids loading," Renewable Energy, Elsevier, vol. 96(PA), pages 832-842.
    14. Vaz, Fernanda Leitão & da Rocha Lins, Jennyfer & Alves Alencar, Bárbara Ribeiro & Silva de Abreu, Íthalo Barbosa & Vidal, Esteban Espinosa & Ribeiro, Ester & Valadares de Sá Barretto Sampaio, Everardo, 2021. "Chemical pretreatment of sugarcane bagasse with liquid fraction recycling," Renewable Energy, Elsevier, vol. 174(C), pages 666-673.
    15. Guilherme, Ederson Paulo Xavier & Zanphorlin, Leticia Maria & Sousa, Amanda Silva & Miyamoto, Renan Yuji & Bruziquesi, Carlos Giovani Oliveira & Mesquita, Bruna Mara Aparecida de Carvalho & Santos, Se, 2022. "Simultaneous saccharification isomerization and Co-fermentation – SSICF: A new process concept for second-generation ethanol biorefineries combining immobilized recombinant enzymes and non-GMO Sacchar," Renewable Energy, Elsevier, vol. 182(C), pages 274-284.
    16. Hu, Sheng-Chun & Cheng, Jie & Wang, Wu-Ping & Zhu, Ya-Hong & Kang, Kang & Zhu, Ming-Qiang & Huang, Xiao-Hua, 2022. "Preparation and analysis of pyroligneous liquor, charcoal and gas from lacquer wood by carbonization method based on a biorefinery process," Energy, Elsevier, vol. 239(PA).
    17. Singh, N.B. & Kumar, Ashwani & Rai, Sarita, 2014. "Potential production of bioenergy from biomass in an Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 65-78.
    18. Muhammad Usman Khan & Birgitte Kiaer Ahring, 2021. "Anaerobic Biodegradation of Wheat Straw Lignin: The Influence of Wet Explosion Pretreatment," Energies, MDPI, vol. 14(18), pages 1-11, September.
    19. Tye, Ying Ying & Lee, Keat Teong & Wan Abdullah, Wan Nadiah & Leh, Cheu Peng, 2016. "The world availability of non-wood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 155-172.
    20. Pandey, Ajay Kumar & Edgard, Gnansounou & Negi, Sangeeta, 2016. "Optimization of concomitant production of cellulase and xylanase from Rhizopus oryzae SN5 through EVOP-factorial design technique and application in Sorghum Stover based bioethanol production," Renewable Energy, Elsevier, vol. 98(C), pages 51-56.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:142:y:2019:i:c:p:612-623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.