IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v205y2023icp461-474.html

Long-term fatigue estimation on offshore wind turbines interface loads through loss function physics-guided learning of neural networks

Author

Listed:
  • de N Santos, Francisco
  • D’Antuono, Pietro
  • Robbelein, Koen
  • Noppe, Nymfa
  • Weijtjens, Wout
  • Devriendt, Christof

Abstract

Offshore wind turbines are exposed during their serviceable lifetime to a wide range of loads from aero-, hydro- and structural dynamics. This complex loading scenario will have an impact on the lifetime of the asset, with fatigue remaining the key structural design driver for the substructure, e.g. the monopile. The ability to monitor the progression of fatigue life of these assets has recently become an operational concern. To achieve a monitoring alternative to strain gauges (cost-prohibitive farm-wide installation), supervisory control and data acquisition (SCADA) systems, often coupled with acceleration measurements, have been used. Existing work focused primarily on ten-minute fatigue load estimation. However, fatigue accumulates over time and the ability to accurately monitor this accumulation of fatigue over a longer time-window is paramount. In this contribution we investigate a novel approach using nine months of real-world SCADA and acceleration ten-minute statistics as inputs of a neural network model for long-term DEM estimation. This is further enhanced by including physical information relative to the problem at hand into the neural network model, in a so-called physics-informed machine learning approach. Specifically, we employ a custom loss function – the Minkowski logarithmic error – which prioritizes conservativeness (over-prediction of fatigue rates) and to embed the damage accumulation into the machine learning model.

Suggested Citation

  • de N Santos, Francisco & D’Antuono, Pietro & Robbelein, Koen & Noppe, Nymfa & Weijtjens, Wout & Devriendt, Christof, 2023. "Long-term fatigue estimation on offshore wind turbines interface loads through loss function physics-guided learning of neural networks," Renewable Energy, Elsevier, vol. 205(C), pages 461-474.
  • Handle: RePEc:eee:renene:v:205:y:2023:i:c:p:461-474
    DOI: 10.1016/j.renene.2023.01.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123001027
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.01.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Igwemezie, Victor & Mehmanparast, Ali & Kolios, Athanasios, 2019. "Current trend in offshore wind energy sector and material requirements for fatigue resistance improvement in large wind turbine support structures – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 181-196.
    2. Maria Martinez-Luengo & Mahmood Shafiee, 2019. "Guidelines and Cost-Benefit Analysis of the Structural Health Monitoring Implementation in Offshore Wind Turbine Support Structures," Energies, MDPI, vol. 12(6), pages 1-26, March.
    3. Avendaño-Valencia, Luis David & Abdallah, Imad & Chatzi, Eleni, 2021. "Virtual fatigue diagnostics of wake-affected wind turbine via Gaussian Process Regression," Renewable Energy, Elsevier, vol. 170(C), pages 539-561.
    4. Nielsen, Jannie Jessen & Sørensen, John Dalsgaard, 2011. "On risk-based operation and maintenance of offshore wind turbine components," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 218-229.
    5. Vera-Tudela, Luis & Kühn, Martin, 2017. "Analysing wind turbine fatigue load prediction: The impact of wind farm flow conditions," Renewable Energy, Elsevier, vol. 107(C), pages 352-360.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sulaiman Hurubi & Hannah Mullings & Pablo Ouro & Peter Stansby & Tim Stallard, 2025. "Unsteady Loading on a Tidal Turbine Due to the Turbulent Wake of an Upstream Turbine Interacting with a Seabed Ridge," Energies, MDPI, vol. 18(1), pages 1-24, January.
    2. Soichiro Kiyoki & Shigeo Yoshida & Mostafa A. Rushdi, 2025. "Machine Learning-Based Prediction of 2 MW Wind Turbine Tower Loads During Power Production Based on Nacelle Behavior," Energies, MDPI, vol. 18(1), pages 1-26, January.
    3. Zhang, Xiaofeng & Wang, Qiang & Ye, Shitong & Luo, Kun & Fan, Jianren, 2024. "Efficient layout optimization of offshore wind farm based on load surrogate model and genetic algorithm," Energy, Elsevier, vol. 309(C).
    4. Ren, Chao & Xing, Yihan, 2023. "AK-MDAmax: Maximum fatigue damage assessment of wind turbine towers considering multi-location with an active learning approach," Renewable Energy, Elsevier, vol. 215(C).
    5. Cheng, Biyi & Yao, Yingxue & Qu, Xiaobin & Zhou, Zhiming & Wei, Jionghui & Liang, Ertang & Zhang, Chengcheng & Kang, Hanwen & Wang, Hongjun, 2024. "Multi-objective parameter optimization of large-scale offshore wind Turbine's tower based on data-driven model with deep learning and machine learning methods," Energy, Elsevier, vol. 305(C).
    6. Moynihan, Bridget & Tronci, Eleonora M. & Hughes, Michael C. & Moaveni, Babak & Hines, Eric, 2024. "Virtual sensing via Gaussian Process for bending moment response prediction of an offshore wind turbine using SCADA data," Renewable Energy, Elsevier, vol. 227(C).
    7. Deng, Wanru & Liu, Liqin & Dai, Yuanjun & Wu, Haitao & Yuan, Zhiming, 2024. "A prediction method for blade deformations of large-scale FVAWTs using dynamics theory and machine learning techniques," Energy, Elsevier, vol. 304(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adedipe, Tosin & Shafiee, Mahmood & Zio, Enrico, 2020. "Bayesian Network Modelling for the Wind Energy Industry: An Overview," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    2. Wang, L. & Kolios, A. & Liu, X. & Venetsanos, D. & Rui, C., 2022. "Reliability of offshore wind turbine support structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    5. Jin, Xin & Zhang, Zhaolong & Shi, Xiaoqiang & Ju, Wenbin, 2014. "A review on wind power industry and corresponding insurance market in China: Current status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1069-1082.
    6. Li, He & Teixeira, Angelo P. & Guedes Soares, C., 2020. "A two-stage Failure Mode and Effect Analysis of offshore wind turbines," Renewable Energy, Elsevier, vol. 162(C), pages 1438-1461.
    7. Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    8. Li, Yan-Fu & Zio, Enrico, 2012. "A multi-state model for the reliability assessment of a distributed generation system via universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 28-36.
    9. Ren, Chao & Xing, Yihan, 2023. "AK-MDAmax: Maximum fatigue damage assessment of wind turbine towers considering multi-location with an active learning approach," Renewable Energy, Elsevier, vol. 215(C).
    10. Wu, Wen & Prescott, Darren & Remenyte-Prescott, Rasa & Saleh, Ali & Ruano, Manuel Chiachio, 2024. "An asset management modelling framework for wind turbine blades considering monitoring system reliability," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    11. Badía, F.G. & Berrade, M.D. & Lee, Hyunju, 2020. "An study of cost effective maintenance policies: Age replacement versus replacement after N minimal repairs," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    12. Leimeister, Mareike & Kolios, Athanasios, 2018. "A review of reliability-based methods for risk analysis and their application in the offshore wind industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1065-1076.
    13. Ju, Shen-Haw, 2022. "Increasing the fatigue life of offshore wind turbine jacket structures using yaw stiffness and damping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    14. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    15. Antoine Chrétien & Antoine Tahan & Philippe Cambron & Adaiton Oliveira-Filho, 2023. "Operational Wind Turbine Blade Damage Evaluation Based on 10-min SCADA and 1 Hz Data," Energies, MDPI, vol. 16(7), pages 1-18, March.
    16. Mark Richmond & Ursula Smolka & Athanasios Kolios, 2020. "Feasibility for Damage Identification in Offshore Wind Jacket Structures through Monitoring of Global Structural Dynamics," Energies, MDPI, vol. 13(21), pages 1-24, November.
    17. Masoud Asgarpour & John Dalsgaard Sørensen, 2018. "Bayesian Based Diagnostic Model for Condition Based Maintenance of Offshore Wind Farms," Energies, MDPI, vol. 11(2), pages 1-17, January.
    18. Luo, Jiaxuan & Luo, Xiaofang & Ma, Xiandong & Zan, Yingfei & Bai, Xu, 2025. "An integrated condition-based opportunistic maintenance framework for offshore wind farms," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    19. Chen, Peng & Han, Dezhi, 2022. "Effective wind speed estimation study of the wind turbine based on deep learning," Energy, Elsevier, vol. 247(C).
    20. Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Henningsen, Keld, 2015. "Performance assessment of wind turbine gearboxes using in-service data: Current approaches and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 144-159.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:205:y:2023:i:c:p:461-474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.