A hierarchical classification/regression algorithm for improving extreme wind speed events prediction
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2022.11.042
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
- Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
- Shi, Jing & Guo, Jinmei & Zheng, Songtao, 2012. "Evaluation of hybrid forecasting approaches for wind speed and power generation time series," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3471-3480.
- Kavasseri, Rajesh G. & Seetharaman, Krithika, 2009. "Day-ahead wind speed forecasting using f-ARIMA models," Renewable Energy, Elsevier, vol. 34(5), pages 1388-1393.
- Morris Brenna & Federica Foiadelli & Michela Longo & Dario Zaninelli, 2017. "Improvement of Wind Energy Production through HVDC Systems," Energies, MDPI, vol. 10(2), pages 1-25, January.
- María Pérez-Ortiz & Silvia Jiménez-Fernández & Pedro A. Gutiérrez & Enrique Alexandre & César Hervás-Martínez & Sancho Salcedo-Sanz, 2016. "A Review of Classification Problems and Algorithms in Renewable Energy Applications," Energies, MDPI, vol. 9(8), pages 1-27, August.
- Pes, Marcelo P. & Pereira, Enio B. & Marengo, Jose A. & Martins, Fernando R. & Heinemann, Detlev & Schmidt, Michael, 2017. "Climate trends on the extreme winds in Brazil," Renewable Energy, Elsevier, vol. 109(C), pages 110-120.
- Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
- Cannon, D.J. & Brayshaw, D.J. & Methven, J. & Coker, P.J. & Lenaghan, D., 2015. "Using reanalysis data to quantify extreme wind power generation statistics: A 33 year case study in Great Britain," Renewable Energy, Elsevier, vol. 75(C), pages 767-778.
- Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Techno-Economic Assessment of Wind Energy Potential at Three Locations in South Korea Using Long-Term Measured Wind Data," Energies, MDPI, vol. 10(9), pages 1-24, September.
- Kumar, Yogesh & Ringenberg, Jordan & Depuru, Soma Shekara & Devabhaktuni, Vijay K. & Lee, Jin Woo & Nikolaidis, Efstratios & Andersen, Brett & Afjeh, Abdollah, 2016. "Wind energy: Trends and enabling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 209-224.
- Wen-Yeau Chang, 2013. "Short-Term Wind Power Forecasting Using the Enhanced Particle Swarm Optimization Based Hybrid Method," Energies, MDPI, vol. 6(9), pages 1-18, September.
- Antonio Mucherino & Petraq J. Papajorgji & Panos M. Pardalos, 2009. "k-Nearest Neighbor Classification," Springer Optimization and Its Applications, in: Data Mining in Agriculture, chapter 0, pages 83-106, Springer.
- Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
- Wang, Jianzhou & Qin, Shanshan & Jin, Shiqiang & Wu, Jie, 2015. "Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 26-42.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Álvarez-Rodríguez, Clara & Parrado-Hernández, Emilio & Pérez-Aracil, Jorge & Prieto-Godino, Luis & Salcedo-Sanz, Sancho, 2024. "Interpretable extreme wind speed prediction with concept bottleneck models," Renewable Energy, Elsevier, vol. 231(C).
- Antony Fute & Mohamed Oubibi & Binghai Sun & Yueliang Zhou & Mustapha Bassiri & Gaoyu Chen, 2024. "Parenting for Success: Exploring the Link Between Parenting Styles and Adolescents’ Academic Achievement Through Their Learning Engagement," SAGE Open, , vol. 14(2), pages 21582440241, June.
- Vega-Bayo, M. & Pérez-Aracil, J. & Prieto-Godino, L. & Salcedo-Sanz, S., 2024. "Improving the prediction of extreme wind speed events with generative data augmentation techniques," Renewable Energy, Elsevier, vol. 221(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Laura Cornejo-Bueno & Lucas Cuadra & Silvia Jiménez-Fernández & Javier Acevedo-Rodríguez & Luis Prieto & Sancho Salcedo-Sanz, 2017. "Wind Power Ramp Events Prediction with Hybrid Machine Learning Regression Techniques and Reanalysis Data," Energies, MDPI, vol. 10(11), pages 1-27, November.
- Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
- Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
- Wang, Yun & Xu, Houhua & Zou, Runmin & Zhang, Lingjun & Zhang, Fan, 2022. "A deep asymmetric Laplace neural network for deterministic and probabilistic wind power forecasting," Renewable Energy, Elsevier, vol. 196(C), pages 497-517.
- Yang, Mao & Huang, Yutong & Xu, Chuanyu & Liu, Chenyu & Dai, Bozhi, 2025. "Review of several key processes in wind power forecasting: Mathematical formulations, scientific problems, and logical relations," Applied Energy, Elsevier, vol. 377(PC).
- Fan Li & Hongzhen Wang & Dan Wang & Dong Liu & Ke Sun, 2025. "A Review of Wind Power Prediction Methods Based on Multi-Time Scales," Energies, MDPI, vol. 18(7), pages 1-47, March.
- Zheng, Chong Wei & Li, Chong Yin & Pan, Jing & Liu, Ming Yang & Xia, Lin Lin, 2016. "An overview of global ocean wind energy resource evaluations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1240-1251.
- Wu, Binrong & Wang, Lin & Zeng, Yu-Rong, 2022. "Interpretable wind speed prediction with multivariate time series and temporal fusion transformers," Energy, Elsevier, vol. 252(C).
- Lilin Cheng & Haixiang Zang & Tao Ding & Rong Sun & Miaomiao Wang & Zhinong Wei & Guoqiang Sun, 2018. "Ensemble Recurrent Neural Network Based Probabilistic Wind Speed Forecasting Approach," Energies, MDPI, vol. 11(8), pages 1-23, July.
- Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
- Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
- Neeraj Bokde & Andrés Feijóo & Daniel Villanueva & Kishore Kulat, 2018. "A Novel and Alternative Approach for Direct and Indirect Wind-Power Prediction Methods," Energies, MDPI, vol. 11(11), pages 1-19, October.
- Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
- Yitian Xing & Fue-Sang Lien & William Melek & Eugene Yee, 2022. "A Multi-Hour Ahead Wind Power Forecasting System Based on a WRF-TOPSIS-ANFIS Model," Energies, MDPI, vol. 15(15), pages 1-35, July.
- Li, Qingyang & Wang, Guosong & Wu, Xinrong & Gao, Zhigang & Dan, Bo, 2024. "Arctic short-term wind speed forecasting based on CNN-LSTM model with CEEMDAN," Energy, Elsevier, vol. 299(C).
- Wang, Yun & Chen, Tuo & Zou, Runmin & Song, Dongran & Zhang, Fan & Zhang, Lingjun, 2022. "Ensemble probabilistic wind power forecasting with multi-scale features," Renewable Energy, Elsevier, vol. 201(P1), pages 734-751.
- Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
- Hu, Jianming & Heng, Jiani & Wen, Jiemei & Zhao, Weigang, 2020. "Deterministic and probabilistic wind speed forecasting with de-noising-reconstruction strategy and quantile regression based algorithm," Renewable Energy, Elsevier, vol. 162(C), pages 1208-1226.
- Wang, Yun & Wang, Haibo & Srinivasan, Dipti & Hu, Qinghua, 2019. "Robust functional regression for wind speed forecasting based on Sparse Bayesian learning," Renewable Energy, Elsevier, vol. 132(C), pages 43-60.
- Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
More about this item
Keywords
Wind speed extremes; Wind extremes prediction; Hierarchical classification/regression schemes; Wind energy; Machine learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:201:y:2022:i:p2:p:157-178. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.