IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v201y2022ip1p160-170.html
   My bibliography  Save this article

PdCu nanoparticles modified free-standing reduced graphene oxide framework as a highly efficient catalyst for direct borohydride-hydrogen peroxide fuel cell

Author

Listed:
  • Yin, Xianzhi
  • Hou, Meiling
  • Zhu, Kai
  • Ye, Ke
  • Yan, Jun
  • Cao, Dianxue
  • Zhang, Dongming
  • Yao, Jiaxin
  • Wang, Guiling

Abstract

A novel electrode of PdCu nanoparticles modified free-standing reduced graphene oxide (rGO) framework (PdCu@rGOF) is fabricated via electrodeposition and chemical reduction and employed to the direct sodium borohydride-hydrogen peroxide fuel cell (DBHPFC). The resultant catalyst reveals excellent catalytic performance towards hydrogen peroxide (H2O2) electroreduction reaction (HPRR) and sodium borohydride (NaBH4) electrooxidation reaction (BOR) along with low activation energy (Ea). Numerically, the PdCu@rGOF electrode delivers an HPRR current density of 455.2 mA cm−2 at 0 V (2 mol L−1 H2SO4+1.3 mol L−1 H2O2). Additionally, the current density of BOR reaches up to 1065.3 mA cm−2 at 0 V for 2 mol L−1 NaOH and 0.3 mol L−1 NaBH4. Meanwhile, the mechanism studies show that HPRR and BOR catalyzed by PdCu@rGOF mainly relates 2-electron-transfer process and quasi-8-electron-transfer process, respectively. Subsequently, PdCu@rGOF is assembled into a fuel cell, yielding the optimal power density of 188.9 mW cm−2. The open circuit potential (OCP) of DBHPFC is about 1.70 V at 293.15 K. The superior electrochemical performance of the optimized electrode can be attributed to the distinctive architecture and the strong adsorption and bond-breaking ability of Pd nanoparticles. This work indicates that the as-prepared PdCu@rGOF can be a promising catalyst for DBHPFC.

Suggested Citation

  • Yin, Xianzhi & Hou, Meiling & Zhu, Kai & Ye, Ke & Yan, Jun & Cao, Dianxue & Zhang, Dongming & Yao, Jiaxin & Wang, Guiling, 2022. "PdCu nanoparticles modified free-standing reduced graphene oxide framework as a highly efficient catalyst for direct borohydride-hydrogen peroxide fuel cell," Renewable Energy, Elsevier, vol. 201(P1), pages 160-170.
  • Handle: RePEc:eee:renene:v:201:y:2022:i:p1:p:160-170
    DOI: 10.1016/j.renene.2022.10.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122015695
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.10.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oh, Taek Hyun & Jang, Bosun & Kwon, Sejin, 2014. "Performance evaluation of direct borohydride–hydrogen peroxide fuel cells with electrocatalysts supported on multiwalled carbon nanotubes," Energy, Elsevier, vol. 76(C), pages 911-919.
    2. Uzundurukan, Arife & Akça, Elif Seda & Budak, Yağmur & Devrim, Yılser, 2021. "Carbon nanotube-graphene supported bimetallic electrocatalyst for direct borohydride hydrogen peroxide fuel cells," Renewable Energy, Elsevier, vol. 172(C), pages 1351-1364.
    3. Oh, Taek Hyun, 2021. "Gold-based bimetallic electrocatalysts supported on multiwalled carbon nanotubes for direct borohydride–hydrogen peroxide fuel cell," Renewable Energy, Elsevier, vol. 163(C), pages 930-938.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oh, Taek Hyun, 2021. "Effect of cathode conditions on performance of direct borohydride–hydrogen peroxide fuel cell system for space exploration," Renewable Energy, Elsevier, vol. 178(C), pages 1156-1164.
    2. Kiyani, Roya & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Nitrogen doped graphene supported palladium-cobalt as a promising catalyst for methanol oxidation reaction: Synthesis, characterization and electrocatalytic performance," Energy, Elsevier, vol. 113(C), pages 1162-1173.
    3. Bizon, Nicu, 2019. "Hybrid power sources (HPSs) for space applications: Analysis of PEMFC/Battery/SMES HPS under unknown load containing pulses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 14-37.
    4. Stoševski, Ivan & Krstić, Jelena & Milikić, Jadranka & Šljukić, Biljana & Kačarević-Popović, Zorica & Mentus, Slavko & Miljanić, Šćepan, 2016. "Radiolitically synthesized nano Ag/C catalysts for oxygen reduction and borohydride oxidation reactions in alkaline media, for potential applications in fuel cells," Energy, Elsevier, vol. 101(C), pages 79-90.
    5. Oh, Taek Hyun & Gang, Byeong Gyu & Kim, Hyuntak & Kwon, Sejin, 2015. "Sodium borohydride hydrogen generator using Co–P/Ni foam catalysts for 200 W proton exchange membrane fuel cell system," Energy, Elsevier, vol. 90(P1), pages 1163-1170.
    6. Oh, Taek Hyun & Jang, Bosun & Kwon, Sejin, 2015. "Estimating the energy density of direct borohydride–hydrogen peroxide fuel cell systems for air-independent propulsion applications," Energy, Elsevier, vol. 90(P1), pages 980-986.
    7. Hosseini, M.G. & Mahmoodi, R. & Sadeghi Amjadi, M., 2017. "Carbon supported Ni1Pt1 nanocatalyst as superior electrocatalyst with increased power density in direct borohydride-hydrogen peroxide and investigation of cell impedance at different temperatures and ," Energy, Elsevier, vol. 131(C), pages 137-148.
    8. Oh, Taek Hyun, 2021. "Gold-based bimetallic electrocatalysts supported on multiwalled carbon nanotubes for direct borohydride–hydrogen peroxide fuel cell," Renewable Energy, Elsevier, vol. 163(C), pages 930-938.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:201:y:2022:i:p1:p:160-170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.