IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v245y2025ics0960148125004896.html
   My bibliography  Save this article

Low-platinum, self-supported hexa-high-entropy-alloy anode for high-performance direct glycerol fuel cells

Author

Listed:
  • Zhang, Han
  • Miao, Lingling
  • Zhao, Na
  • Zhao, Qianxi
  • Shi, Yaoan
  • Wang, Wei

Abstract

High-entropy-alloys (HEAs) based catalytic electrodes exhibit adjustable compositions, abundant active sites, and efficient electron transfer properties, making them to be good candidates for a wide range of electrocatalytic reactions in renewable energy related technologies. Herein, a self-supported catalytic electrode based on a hexa-element HEAs, loaded onto carbon cloth (PtCuMoMnNiFe-NPs/CC), was developed for glycerol oxidation reactions (GOR) as the anode in direct glycerol fuel cells (DGFCs). It is noteworthy that the results indicate that the configurational entropy of as-prepared HEAs on PtCuMoMnNiFe-NPs/CC is 12.65R, conforming the good formation of high-entropy materials. The electrochemical results showed that the peak current density of GOR for PtCuMoMnNiFe-NPs/CC and Pt/C electrodes reached 0.124 mA cm−2 and 0.042 mA cm−2, respectively. Obviously, the PtCuMoMnNiFe-NPs/CC electrode exceeded that of Pt/C electrode by nearly 195.2 %. Furthermore, in a 500-cycle durability test, the PtCuMoMnNiFe-NPs/CC also demonstrated better current retention (67.7 %) compared to Pt/C, demonstrating good stability for long-term use in renewable energy systems. Notably, when used as anodes in DGFCs, the PtCuMoMnNiFe-NPs/CC is 29.99 mW cm−2 which is outperformed the Pt/C electrode by nearly 105 %. This study would offer a promising strategy for developing advanced low-Pt HEAs materials in energy-related applications.

Suggested Citation

  • Zhang, Han & Miao, Lingling & Zhao, Na & Zhao, Qianxi & Shi, Yaoan & Wang, Wei, 2025. "Low-platinum, self-supported hexa-high-entropy-alloy anode for high-performance direct glycerol fuel cells," Renewable Energy, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:renene:v:245:y:2025:i:c:s0960148125004896
    DOI: 10.1016/j.renene.2025.122827
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125004896
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122827?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin He & Menggang Li & Longyu Qiu & Shuo Geng & Yequn Liu & Fenyang Tian & Mingchuan Luo & Hu Liu & Yongsheng Yu & Weiwei Yang & Shaojun Guo, 2024. "Single-atom Mo-tailored high-entropy-alloy ultrathin nanosheets with intrinsic tensile strain enhance electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Zhe An & Zilong Zhang & Zeyu Huang & Hongbo Han & Binbin Song & Jian Zhang & Qi Ping & Yanru Zhu & Hongyan Song & Bin Wang & Lirong Zheng & Jing He, 2022. "Pt1 enhanced C-H activation synergistic with Ptn catalysis for glycerol cascade oxidation to glyceric acid," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Gao, Yibo & Mao, Yanpeng & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong & Chen, Guifang & Chen, Shouyan, 2020. "Efficient generation of hydrogen by two-step thermochemical cycles: Successive thermal reduction and water splitting reactions using equal-power microwave irradiation and a high entropy material," Applied Energy, Elsevier, vol. 279(C).
    4. Liangyu Li & Xiaotong Liu & Guanghe Liu & Suying Xu & Gaofei Hu & Leyu Wang, 2024. "Valence-engineered catalysis-selectivity regulation of molybdenum oxide nanozyme for acute kidney injury therapy and post-cure assessment," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Uzundurukan, Arife & Akça, Elif Seda & Budak, Yağmur & Devrim, Yılser, 2021. "Carbon nanotube-graphene supported bimetallic electrocatalyst for direct borohydride hydrogen peroxide fuel cells," Renewable Energy, Elsevier, vol. 172(C), pages 1351-1364.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Yan & Bowen Liu & Xin Zhou & Fanyu Meng & Mingyue Zhao & Yue Pan & Jie Li & Yining Wu & Hui Zhao & Yibin Liu & Xiaobo Chen & Lina Li & Xiang Feng & De Chen & Honghong Shan & Chaohe Yang & Ning Yan, 2023. "Enhancing polyol/sugar cascade oxidation to formic acid with defect rich MnO2 catalysts," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Yin, Xianzhi & Hou, Meiling & Zhu, Kai & Ye, Ke & Yan, Jun & Cao, Dianxue & Zhang, Dongming & Yao, Jiaxin & Wang, Guiling, 2022. "PdCu nanoparticles modified free-standing reduced graphene oxide framework as a highly efficient catalyst for direct borohydride-hydrogen peroxide fuel cell," Renewable Energy, Elsevier, vol. 201(P1), pages 160-170.
    3. Jingjing Cao & Huaxing Liang & Jie Yang & Zhiyang Zhu & Jin Deng & Xiaodong Li & Menachem Elimelech & Xinglin Lu, 2024. "Depolymerization mechanisms and closed-loop assessment in polyester waste recycling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Wei Chen & Liang Zhang & Leitao Xu & Yuanqing He & Huan Pang & Shuangyin Wang & Yuqin Zou, 2024. "Pulse potential mediated selectivity for the electrocatalytic oxidation of glycerol to glyceric acid," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Daphne Oudejans & Michele Offidani & Achilleas Constantinou & Stefania Albonetti & Nikolaos Dimitratos & Atul Bansode, 2022. "A Comprehensive Review on Two-Step Thermochemical Water Splitting for Hydrogen Production in a Redox Cycle," Energies, MDPI, vol. 15(9), pages 1-24, April.
    6. Wenyuan Lyu & Yang Liu & Datong Chen & Fengliang Wang & Yingwei Li, 2024. "Engineering the electron localization of metal sites on nanosheets assembled periodic macropores for CO2 photoreduction," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Jiang, Boshu & Guene Lougou, Bachirou & Zhang, Hao & Geng, Boxi & Wu, Lianxuan & Shuai, Yong, 2022. "Preparation and solar thermochemical properties analysis of NiFe2O4@SiC/ @Si3N4 for high-performance CO2-splitting," Applied Energy, Elsevier, vol. 328(C).
    8. Yuan Lu & Byoung Guan Lee & Cheng Lin & Tae-Kyung Liu & Zhipeng Wang & Jiaming Miao & Sang Ho Oh & Ki Chul Kim & Kan Zhang & Jong Hyeok Park, 2024. "Solar-driven highly selective conversion of glycerol to dihydroxyacetone using surface atom engineered BiVO4 photoanodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).
    10. Yang Liu & Huishan Shang & Bing Zhang & Dongpeng Yan & Xu Xiang, 2024. "Surface fluorination of BiVO4 for the photoelectrochemical oxidation of glycerol to formic acid," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Fu, Xubing & Liu, Yan & Wang, Xiaodong & Kang, Lei & Qiu, Tianjie, 2025. "Graphene-based advanced materials for energy storage and conversion systems: Progress, challenges, and commercial future," Applied Energy, Elsevier, vol. 386(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:245:y:2025:i:c:s0960148125004896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.