IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v200y2022icp1092-1104.html
   My bibliography  Save this article

Effects of the temperature range on the energy performance of mixed and unmixed digesters with submerged waste: An experimental and CFD simulation study

Author

Listed:
  • El Ibrahimi, Mohammed
  • Khay, Ismail
  • El Maakoul, Anas
  • Bakhouya, Mohamed

Abstract

This study evaluated the effects of temperature range and mixing on the thermal and energetic performance of a batch pilot-scale anaerobic digester with submerged waste (ADSW). This digester was operated under four configurations, namely unmixed mesophilic (UMAD), liquid recirculation-mixed mesophilic (LMAD), unmixed thermophilic (UTAD), and liquid recirculation-mixed thermophilic (LTAD). Anaerobic digestion (AD) experiments indicated that the mixed ADSW produces higher methane yields under the thermophilic temperature range (416.12 Nm3CH4/tVS) compared to the mesophilic range (362.23 Nm3CH4/tVS). However, when the ADSW is not mixed, lower methane yields are measured under the thermophilic range (184.82 Nm3CH4/tVS) compared to the mesophilic range (295.41 Nm3CH4/tVS). In an attempt to understand these opposing results, computational fluid dynamics (CFD) simulations were conducted. Findings showed that while a completely uniform temperature is achieved within the digester when mixing is performed, a temperature stratification occurs under unmixed conditions. This stratification, which is more severe in the thermophilic range, may be the reason behind the reported AD experiments findings. The energy balance calculations indicate that the ADSW achieves its best energy efficiency ratio under UMAD (1.72), followed respectively by LMAD (0.83), LTAD (0.66), and UTAD (0.29).

Suggested Citation

  • El Ibrahimi, Mohammed & Khay, Ismail & El Maakoul, Anas & Bakhouya, Mohamed, 2022. "Effects of the temperature range on the energy performance of mixed and unmixed digesters with submerged waste: An experimental and CFD simulation study," Renewable Energy, Elsevier, vol. 200(C), pages 1092-1104.
  • Handle: RePEc:eee:renene:v:200:y:2022:i:c:p:1092-1104
    DOI: 10.1016/j.renene.2022.09.128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122014872
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.09.128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajendran, Karthik & Kankanala, Harshavardhan R. & Martinsson, Rakel & Taherzadeh, Mohammad J., 2014. "Uncertainty over techno-economic potentials of biogas from municipal solid waste (MSW): A case study on an industrial process," Applied Energy, Elsevier, vol. 125(C), pages 84-92.
    2. James Bambara & Andreas K. Athienitis & Ursula Eicker, 2021. "Decarbonizing Local Mobility and Greenhouse Agriculture through Residential Building Energy Upgrades: A Case Study for Québec," Energies, MDPI, vol. 14(20), pages 1-31, October.
    3. Pei Guo & Jiri Zhou & Rongjiang Ma & Nanyang Yu & Yanping Yuan, 2019. "Biogas Production and Heat Transfer Performance of a Multiphase Flow Digester," Energies, MDPI, vol. 12(10), pages 1-18, May.
    4. Ghasimi, Dara S.M. & de Kreuk, Merle & Maeng, Sung Kyu & Zandvoort, Marcel H. & van Lier, Jules B., 2016. "High-rate thermophilic bio-methanation of the fine sieved fraction from Dutch municipal raw sewage: Cost-effective potentials for on-site energy recovery," Applied Energy, Elsevier, vol. 165(C), pages 569-582.
    5. Mohammadrezaei, Rashed & Zareei, Samira & Behroozi- Khazaei, Nasser, 2018. "Optimum mixing rate in biogas reactors: Energy balance calculations and computational fluid dynamics simulation," Energy, Elsevier, vol. 159(C), pages 54-60.
    6. Li, Chao & Tao, Yu & Fang, Jun & Li, Qiang & Lu, Wenjing, 2020. "Impact of continuous leachate recirculation during solid state anaerobic digestion of Miscanthus," Renewable Energy, Elsevier, vol. 154(C), pages 38-45.
    7. Abiodun O. Jegede & Grietje Zeeman & Harry Bruning, 2019. "Effect of Mixing Regimes on Cow Manure Digestion in Impeller Mixed, Unmixed and Chinese Dome Digesters," Energies, MDPI, vol. 12(13), pages 1-14, July.
    8. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    9. Zhang, Jingxin & Mao, Liwei & Nithya, Karthikeyan & Loh, Kai-Chee & Dai, Yanjun & He, Yiliang & Wah Tong, Yen, 2019. "Optimizing mixing strategy to improve the performance of an anaerobic digestion waste-to-energy system for energy recovery from food waste," Applied Energy, Elsevier, vol. 249(C), pages 28-36.
    10. Singh, Buta & Szamosi, Zoltán & Siménfalvi, Zoltán, 2019. "State of the art on mixing in an anaerobic digester: A review," Renewable Energy, Elsevier, vol. 141(C), pages 922-936.
    11. Yuan, Haiping & Zhu, Nanwen, 2016. "Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 429-438.
    12. Egwu, Uchenna & Onyelowe, Kennedy & Tabraiz, Shamas & Johnson, Emmanuel & Mutshow, Alexander D., 2022. "Investigation of the effect of equal and unequal feeding time intervals on process stability and methane yield during anaerobic digestion grass silage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Silvestre, G. & Illa, J. & Fernández, B. & Bonmatí, A., 2014. "Thermophilic anaerobic co-digestion of sewage sludge with grease waste: Effect of long chain fatty acids in the methane yield and its dewatering properties," Applied Energy, Elsevier, vol. 117(C), pages 87-94.
    14. El Ibrahimi, Mohammed & Khay, Ismail & El Maakoul, Anas & Bakhouya, Mohamed, 2021. "Energy performance of an unmixed anaerobic digester with submerged solid waste: Effects of temperature distribution," Energy, Elsevier, vol. 231(C).
    15. Huang, Ruyi & Huang, Zhengxin & Ran, Yi & Xiong, Xia & Luo, Tao & Long, Enshen & Mei, Zili & Wang, Jun, 2021. "Experimental and simulation study on the surface contact between biogas fermentation liquid and straw material based on hydraulic mixing," Energy, Elsevier, vol. 222(C).
    16. Makamure, Francis & Mukumba, Patrick & Makaka, Golden, 2021. "An analysis of bio-digester substrate heating methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Ibrahimi, Mohammed & Khay, Ismail & El Maakoul, Anas & Bakhouya, Mohamed, 2021. "Energy performance of an unmixed anaerobic digester with submerged solid waste: Effects of temperature distribution," Energy, Elsevier, vol. 231(C).
    2. Di Capua, Francesco & Spasiano, Danilo & Giordano, Andrea & Adani, Fabrizio & Fratino, Umberto & Pirozzi, Francesco & Esposito, Giovanni, 2020. "High-solid anaerobic digestion of sewage sludge: challenges and opportunities," Applied Energy, Elsevier, vol. 278(C).
    3. Buta Singh & Narinder Singh & Zsolt Čonka & Michal Kolcun & Zoltán Siménfalvi & Zsolt Péter & Zoltán Szamosi, 2021. "Critical Analysis of Methods Adopted for Evaluation of Mixing Efficiency in an Anaerobic Digester," Sustainability, MDPI, vol. 13(12), pages 1-27, June.
    4. Oluwafunmilayo Abiola Aworanti & Oluseye Omotoso Agbede & Samuel Enahoro Agarry & Ayobami Olu Ajani & Oyetola Ogunkunle & Opeyeolu Timothy Laseinde & S. M. Ashrafur Rahman & Islam Md Rizwanul Fattah, 2023. "Decoding Anaerobic Digestion: A Holistic Analysis of Biomass Waste Technology, Process Kinetics, and Operational Variables," Energies, MDPI, vol. 16(8), pages 1-36, April.
    5. Wang, Zhongzhong & Hu, Yuansheng & Wang, Shun & Wu, Guangxue & Zhan, Xinmin, 2023. "A critical review on dry anaerobic digestion of organic waste: Characteristics, operational conditions, and improvement strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    6. Roberto Eloy Hernández Regalado & Jurek Häner & Elmar Brügging & Jens Tränckner, 2022. "Techno-Economic Assessment of Solid–Liquid Biogas Treatment Plants for the Agro-Industrial Sector," Energies, MDPI, vol. 15(12), pages 1-20, June.
    7. Carolinne Secco & Maria Eduarda Kounaris Fuziki & Angelo Marcelo Tusset & Giane Gonçalves Lenzi, 2023. "Reactive Processes for H 2 S Removal," Energies, MDPI, vol. 16(4), pages 1-14, February.
    8. Zhao, Shuchun & Guo, Junheng & Dang, Xiuhu & Ai, Bingyan & Zhang, Minqing & Li, Wei & Zhang, Jinli, 2022. "Energy consumption, flow characteristics and energy-efficient design of cup-shape blade stirred tank reactors: Computational fluid dynamics and artificial neural network investigation," Energy, Elsevier, vol. 240(C).
    9. Wang, Jun & Xue, Qingwen & Guo, Ting & Mei, Zili & Long, Enshen & Wen, Qian & Huang, Wei & Luo, Tao & Huang, Ruyi, 2018. "A review on CFD simulating method for biogas fermentation material fluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 64-73.
    10. Stephen Tangwe & Patrick Mukumba & Golden Makaka, 2022. "Comparison of the Prediction Accuracy of Total Viable Bacteria Counts in a Batch Balloon Digester Charged with Cow Manure: Multiple Linear Regression and Non-Linear Regression Models," Energies, MDPI, vol. 15(19), pages 1-23, October.
    11. Grima-Olmedo, C. & Ramírez-Gómez, Á. & Alcalde-Cartagena, R., 2014. "Energetic performance of landfill and digester biogas in a domestic cooker," Applied Energy, Elsevier, vol. 134(C), pages 301-308.
    12. Shubham Dilip Sarode & Deepak Kumar & Divya Mathias & David McNeill & Prasad Kaparaju, 2023. "Anaerobic Digestion of Spoiled Maize, Lucerne and Barley Silage Mixture with and without Cow Manure: Methane Yields and Kinetic Studies," Energies, MDPI, vol. 16(17), pages 1-20, August.
    13. Zhang, Jingxin & Hu, Qiang & Qu, Yiyuan & Dai, Yanjun & He, Yiliang & Wang, Chi-Hwa & Tong, Yen Wah, 2020. "Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production," Applied Energy, Elsevier, vol. 257(C).
    14. Ahmadi, Ehsan & Yousefzadeh, Samira & Mokammel, Adel & Miri, Mohammad & Ansari, Mohsen & Arfaeinia, Hossein & Badi, Mojtaba Yegane & Ghaffari, Hamid Reza & Rezaei, Soheila & Mahvi, Amir Hossein, 2020. "Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    15. Marcin Dębowski & Marcin Zieliński & Joanna Kazimierowicz & Anna Nowicka & Magda Dudek, 2024. "Optimisation of Biogas Production in the Co-Digestion of Pre-Hydrodynamically Cavitated Aerobic Granular Sludge with Waste Fats," Energies, MDPI, vol. 17(4), pages 1-16, February.
    16. Yin, Yao & Liu, Ya-Juan & Meng, Shu-Juan & Kiran, Esra Uçkun & Liu, Yu, 2016. "Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion," Applied Energy, Elsevier, vol. 179(C), pages 1131-1137.
    17. Adrian Gonzalez & Hongxiao Guo & Oscar Ortega-Ibáñez & Coert Petri & Jules B. van Lier & Merle de Kreuk & Alexander Hendriks, 2020. "Mild Thermal Pre-Treatment of Waste Activated Sludge to Increase Loading Capacity, Biogas Production, and Solids’ Degradation: A Pilot-Scale Study," Energies, MDPI, vol. 13(22), pages 1-18, November.
    18. James Darmey & Julius Cudjoe Ahiekpor & Satyanarayana Narra & Osei-Wusu Achaw & Herbert Fiifi Ansah, 2023. "Municipal Solid Waste Generation Trend and Bioenergy Recovery Potential: A Review," Energies, MDPI, vol. 16(23), pages 1-21, November.
    19. Owusu-Agyeman, I. & Bedaso, B. & Laumeyer, C. & Pan, C. & Malovanyy, A. & Baresel, C. & Plaza, E. & Cetecioglu, Z., 2023. "Volatile fatty acids production from municipal waste streams and use as a carbon source for denitrification: The journey towards full-scale application and revealing key microbial players," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    20. A. S. M. Younus Bhuiyan Sabbir & Chayan Kumer Saha & Rajesh Nandi & Md. Forid Uz Zaman & Md. Monjurul Alam & Shiplu Sarker, 2021. "Effects of Seasonal Temperature Variation on Slurry Temperature and Biogas Composition of a Commercial Fixed-Dome Anaerobic Digester Used in Bangladesh," Sustainability, MDPI, vol. 13(19), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:200:y:2022:i:c:p:1092-1104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.