IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v195y2022icp620-636.html
   My bibliography  Save this article

Long-term thermomechanical displacement prediction of energy piles using machine learning techniques

Author

Listed:
  • Pei, Huafu
  • Song, Huaibo
  • Meng, Fanhua
  • Liu, Weiling

Abstract

Energy piles have attracted much attention in recent years because they provide a profitable solution for efficient shallow geothermal energy utilization in different climatic regions. However, the long-term performance design of energy piles under different thermal scenarios currently relies on time-consuming and computationally expensive methods such as numerical simulations, which seriously hinders the further engineering application of energy piles. To this end, this paper provides a high-precision and computationally efficient model for predicting the long-term performance of energy pile design through an artificial neural network machine learning process. First, experimentally validated numerical models are developed. Then, they are utilized to generate the training and evaluate datasets for the proposed model by inputting sixty typical thermal load distributions in different regions of China. Finally, the performance of the proposed model is evaluated by comparing its calculations with those obtained using numerical models. The results show that the proposed model can predict the long-term performance of energy piles and enrich the current methods for the long-term design of energy piles. Furthermore, its features that tremendously reduce the computational time and minimum required resources make it an excellent supplement compared with numerical simulations.

Suggested Citation

  • Pei, Huafu & Song, Huaibo & Meng, Fanhua & Liu, Weiling, 2022. "Long-term thermomechanical displacement prediction of energy piles using machine learning techniques," Renewable Energy, Elsevier, vol. 195(C), pages 620-636.
  • Handle: RePEc:eee:renene:v:195:y:2022:i:c:p:620-636
    DOI: 10.1016/j.renene.2022.06.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122008904
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.06.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Moel, Monique & Bach, Peter M. & Bouazza, Abdelmalek & Singh, Rao M. & Sun, JingLiang O., 2010. "Technological advances and applications of geothermal energy pile foundations and their feasibility in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2683-2696, December.
    2. Gang, Wenjie & Wang, Jinbo & Wang, Shengwei, 2014. "Performance analysis of hybrid ground source heat pump systems based on ANN predictive control," Applied Energy, Elsevier, vol. 136(C), pages 1138-1144.
    3. Rammal, D. & Mroueh, H. & Burlon, S., 2018. "Impact of thermal solicitations on the design of energy piles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 111-120.
    4. Anderson, Austin & Rezaie, Behnaz, 2019. "Geothermal technology: Trends and potential role in a sustainable future," Applied Energy, Elsevier, vol. 248(C), pages 18-34.
    5. Sutman, Melis & Speranza, Gianluca & Ferrari, Alessio & Larrey-Lassalle, Pyrène & Laloui, Lyesse, 2020. "Long-term performance and life cycle assessment of energy piles in three different climatic conditions," Renewable Energy, Elsevier, vol. 146(C), pages 1177-1191.
    6. Wang, Yuqing & Liu, Yingxin & Dou, Jinyue & Li, Mingzhu & Zeng, Ming, 2020. "Geothermal energy in China: Status, challenges, and policy recommendations," Utilities Policy, Elsevier, vol. 64(C).
    7. Hu, Biao & Luo, Zhe, 2020. "Life-cycle probabilistic geotechnical model for energy piles," Renewable Energy, Elsevier, vol. 147(P1), pages 741-750.
    8. Cecinato, Francesco & Loveridge, Fleur A., 2015. "Influences on the thermal efficiency of energy piles," Energy, Elsevier, vol. 82(C), pages 1021-1033.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Qijie & Fan, Jianhua & Liu, Hantao, 2023. "Energy pile-based ground source heat pump system with seasonal solar energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 1132-1146.
    2. Xue, Zhenqian & Zhang, Kai & Zhang, Chi & Ma, Haoming & Chen, Zhangxin, 2023. "Comparative data-driven enhanced geothermal systems forecasting models: A case study of Qiabuqia field in China," Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    2. Li, Renrong & Kong, Gangqiang & Sun, Guangchao & Zhou, Yang & Yang, Qing, 2021. "Thermomechanical characteristics of an energy pile-raft foundation under heating operations," Renewable Energy, Elsevier, vol. 175(C), pages 580-592.
    3. Cunha, R.P. & Bourne-Webb, P.J., 2022. "A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Sani, Abubakar Kawuwa & Singh, Rao Martand & Amis, Tony & Cavarretta, Ignazio, 2019. "A review on the performance of geothermal energy pile foundation, its design process and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 54-78.
    5. Cao, Ziming & Zhang, Guozhu & Liu, Yiping & Zhao, Xu & Li, Chenglin, 2022. "Influence of backfilling phase change material on thermal performance of precast high-strength concrete energy pile," Renewable Energy, Elsevier, vol. 184(C), pages 374-390.
    6. Cherati, Davood Yazdani & Ghasemi-Fare, Omid, 2021. "Practical approaches for implementation of energy piles in Iran based on the lessons learned from the developed countries experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    7. Ng, C.W.W. & Farivar, A. & Gomaa, S.M.M.H. & Shakeel, M. & Jafarzadeh, F., 2021. "Performance of elevated energy pile groups with different pile spacing in clay subjected to cyclic non-symmetrical thermal loading," Renewable Energy, Elsevier, vol. 172(C), pages 998-1012.
    8. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    9. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
    10. Ji-Hyun Shin & Hyo-Jun Kim & Han-Gyeol Lee & Young-Hum Cho, 2023. "Variable Water Flow Control of Hybrid Geothermal Heat Pump System," Energies, MDPI, vol. 16(17), pages 1-18, August.
    11. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    12. Aizhao Zhou & Xianwen Huang & Wei Wang & Pengming Jiang & Xinwei Li, 2021. "Thermo-Hydraulic Performance of U-Tube Borehole Heat Exchanger with Different Cross-Sections," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    13. Andrea Ferrantelli & Jevgeni Fadejev & Jarek Kurnitski, 2019. "Energy Pile Field Simulation in Large Buildings: Validation of Surface Boundary Assumptions," Energies, MDPI, vol. 12(5), pages 1-20, February.
    14. Colmenar-Santos, Antonio & Palomo-Torrejón, Elisabet & Mur-Pérez, Francisco & Rosales-Asensio, Enrique, 2020. "Thermal desalination potential with parabolic trough collectors and geothermal energy in the Spanish southeast," Applied Energy, Elsevier, vol. 262(C).
    15. Qiu, Lihua & He, Li & Kang, Yu & Liang, Dongzhe, 2022. "Assessment of the potential of enhanced geothermal systems in Asia under the impact of global warming," Renewable Energy, Elsevier, vol. 194(C), pages 636-646.
    16. Alina Zaharia & Maria Claudia Diaconeasa & Laura Brad & Georgiana-Raluca Lădaru & Corina Ioanăș, 2019. "Factors Influencing Energy Consumption in the Context of Sustainable Development," Sustainability, MDPI, vol. 11(15), pages 1-28, August.
    17. Vaccari, Marco & Pannocchia, Gabriele & Tognotti, Leonardo & Paci, Marco & Bonciani, Roberto, 2020. "A rigorous simulation model of geothermal power plants for emission control," Applied Energy, Elsevier, vol. 263(C).
    18. Hashemian, Nasim & Noorpoor, Alireza, 2022. "A geothermal-biomass powered multi-generation plant with freshwater and hydrogen generation options: Thermo-economic-environmental appraisals and multi-criteria optimization," Renewable Energy, Elsevier, vol. 198(C), pages 254-266.
    19. Xia, Z.H. & Jia, G.S. & Ma, Z.D. & Wang, J.W. & Zhang, Y.P. & Jin, L.W., 2021. "Analysis of economy, thermal efficiency and environmental impact of geothermal heating system based on life cycle assessments," Applied Energy, Elsevier, vol. 303(C).
    20. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Wang, Ming, 2023. "Heat extraction performance evaluation of U-shaped well geothermal production system under different well-layout parameters and engineering schemes," Renewable Energy, Elsevier, vol. 203(C), pages 473-484.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:195:y:2022:i:c:p:620-636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.