IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v191y2022icp852-867.html
   My bibliography  Save this article

Economic and ecological assessment of photovoltaic systems for wastewater treatment plants in China

Author

Listed:
  • Chen, Xin
  • Zhou, Wenjia

Abstract

The number of wastewater treatment plants (WWTPs) in China is fast growing as the country's urbanization accelerates. WWTPs, part of the high-energy-consumption industry, must use a lot of energy in wastewater treatment. PV projects in WWTPs are viable solutions for energy conservation, but PV project investors, WWTP owners, and government authorities need to conduct rigorous economic and ecological assessments. This article examines the PV potential, financial feasibility, energy savings, and emission reduction effect of large-scale WWTPs in China using the cable-supported system. Furthermore, China's total PV power potential for urban WWTPs has been assessed at 5.6 GW for the first time. According to economic feasibility analysis, 26 of the 31 WWTP-PV projects in China's various regions are economically viable. Moreover, the WWTP-PV projects can assist WWTP in reducing carbon emissions by 10%–40%. Further sensitivity analysis reveals that practically all WWTP-PV projects will be viable in the future, assuming that certain solar resource requirements are met, and appropriate investment strategies are implemented.

Suggested Citation

  • Chen, Xin & Zhou, Wenjia, 2022. "Economic and ecological assessment of photovoltaic systems for wastewater treatment plants in China," Renewable Energy, Elsevier, vol. 191(C), pages 852-867.
  • Handle: RePEc:eee:renene:v:191:y:2022:i:c:p:852-867
    DOI: 10.1016/j.renene.2022.04.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122005572
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Hongtao & Yang, Yi & Keller, Arturo A. & Li, Xiang & Feng, Shijin & Dong, Ya-nan & Li, Fengting, 2016. "Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA, Germany, China and South Africa," Applied Energy, Elsevier, vol. 184(C), pages 873-881.
    2. Yang, Junwen & Chen, Bin, 2021. "Energy efficiency evaluation of wastewater treatment plants (WWTPs) based on data envelopment analysis," Applied Energy, Elsevier, vol. 289(C).
    3. Xiong, Yu-Tong & Zhang, Jing & Chen, You-Peng & Guo, Jin-Song & Fang, Fang & Yan, Peng, 2021. "Geographic distribution of net-zero energy wastewater treatment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Bey, M. & Hamidat, A. & Nacer, T., 2021. "Eco-energetic feasibility study of using grid-connected photovoltaic system in wastewater treatment plant," Energy, Elsevier, vol. 216(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Runyao & Shen, Ziheng & Wang, Hongtao & Xu, Jin & Ai, Zisheng & Zheng, Hongyuan & Liu, Runxi, 2021. "Evaluating the energy efficiency of wastewater treatment plants in the Yangtze River Delta: Perspectives on regional discrepancies," Applied Energy, Elsevier, vol. 297(C).
    2. Liu, Runxi & Huang, Runyao & Shen, Ziheng & Wang, Hongtao & Xu, Jin, 2021. "Optimizing the recovery pathway of a net-zero energy wastewater treatment model by balancing energy recovery and eco-efficiency," Applied Energy, Elsevier, vol. 298(C).
    3. Xiong, Yu-Tong & Zhang, Jing & Chen, You-Peng & Guo, Jin-Song & Fang, Fang & Yan, Peng, 2021. "Geographic distribution of net-zero energy wastewater treatment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Lin, Chihao & Xiao, Xiangmin & Li, Yu-You & Liu, Jianyong, 2023. "Evaluation of the economic and environmental benefits of partial nitritation anammox and partial denitrification anammox coupling preliminary treatment in mainstream wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Yin, Sihua & Yang, Haidong & Xu, Kangkang & Zhu, Chengjiu & Zhang, Shaqing & Liu, Guosheng, 2022. "Dynamic real–time abnormal energy consumption detection and energy efficiency optimization analysis considering uncertainty," Applied Energy, Elsevier, vol. 307(C).
    6. Renata Toczyłowska-Mamińska & Mariusz Ł. Mamiński, 2022. "Wastewater as a Renewable Energy Source—Utilisation of Microbial Fuel Cell Technology," Energies, MDPI, vol. 15(19), pages 1-14, September.
    7. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).
    8. Maktabifard, Mojtaba & Al-Hazmi, Hussein E. & Szulc, Paulina & Mousavizadegan, Mohammad & Xu, Xianbao & Zaborowska, Ewa & Li, Xiang & Mąkinia, Jacek, 2023. "Net-zero carbon condition in wastewater treatment plants: A systematic review of mitigation strategies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    9. Salman, Muhammad & Long, Xingle & Wang, Guimei & Zha, Donglan, 2022. "Paris climate agreement and global environmental efficiency: New evidence from fuzzy regression discontinuity design," Energy Policy, Elsevier, vol. 168(C).
    10. Adam Masłoń & Joanna Czarnota & Paulina Szczyrba & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2024. "Assessment of Energy Self-Sufficiency of Wastewater Treatment Plants—A Case Study from Poland," Energies, MDPI, vol. 17(5), pages 1-19, March.
    11. Ihsan Hamawand & Anas Ghadouani & Jochen Bundschuh & Sara Hamawand & Raed A. Al Juboori & Sayan Chakrabarty & Talal Yusaf, 2017. "A Critical Review on Processes and Energy Profile of the Australian Meat Processing Industry," Energies, MDPI, vol. 10(5), pages 1-29, May.
    12. Zhao, Yuhuan & Shi, Qiaoling & li, Hao & Qian, Zhiling & Zheng, Lu & Wang, Song & He, Yizhang, 2022. "Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China," Energy, Elsevier, vol. 238(PA).
    13. Xinna Zhao & Li Guo & Zhiyuan Gao & Yu Hao, 2024. "Estimation and Analysis of Carbon Emission Efficiency in Chinese Industry and Its Influencing Factors—Evidence from the Micro Level," Energies, MDPI, vol. 17(4), pages 1-15, February.
    14. Elio, Joseph & Milcarek, Ryan J., 2022. "Techno-economic analysis and case study of combined heat and power systems in a wastewater treatment plant," Energy, Elsevier, vol. 260(C).
    15. Chenxi Pang & Xi Luo & Bing Rong & Xuebiao Nie & Zhengyu Jin & Xue Xia, 2022. "Carbon Emission Accounting and the Carbon Neutralization Model for a Typical Wastewater Treatment Plant in China," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    16. Ana Belén Lozano Avilés & Francisco del Cerro Velázquez & Mercedes Llorens Pascual del Riquelme, 2019. "Methodology for Energy Optimization in Wastewater Treatment Plants. Phase I: Control of the Best Operating Conditions," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    17. Yan, Peng & Shi, Hong-Xin & Chen, You-Peng & Gao, Xu & Fang, Fang & Guo, Jin-Song, 2020. "Optimization of recovery and utilization pathway of chemical energy from wastewater pollutants by a net-zero energy wastewater treatment model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    18. Esra Kalya & Alper Alver, 2023. "Determining the contribution of the wastewater treatment plant to the sustainable environment with water footprint indicators," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12999-13014, November.
    19. Rosa M. Llácer-Iglesias & P. Amparo López-Jiménez & Modesto Pérez-Sánchez, 2021. "Energy Self-Sufficiency Aiming for Sustainable Wastewater Systems: Are All Options Being Explored?," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    20. Mngereza Miraji & Xi Li & Jie Liu & Chunmiao Zheng, 2019. "Evaluation of Water and Energy Nexus in Wami Ruvu River Basin, Tanzania," Sustainability, MDPI, vol. 11(11), pages 1-12, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:191:y:2022:i:c:p:852-867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.