IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v243y2025ics0960148125002885.html
   My bibliography  Save this article

Based on machine learning: Energy consumption optimization and energy efficiency evaluation for photovoltaic electro-fenton technology in wastewater treatment plant

Author

Listed:
  • Zhang, Wei
  • Zeng, Xiding
  • Huang, Yuan
  • Liang, Juan
  • Wang, Xinyu
  • Guo, Jiahong
  • Li, Zhangyu
  • Yang, Kun
  • Zhang, Jing

Abstract

The application of photovoltaic (PV) technology in wastewater treatment plants (WWTPs) holds enormous potential as it provides renewable energy and can significantly reduce energy consumption and operation costs. However, it is a crucial and challenging issue to accurately and effectively assess PV technology's consumption optimization and energy efficiency in WWTPs. This study chose the PV-Electro-Fenton process as an example. The PV-Electro-Fenton process's energy consumption and pollutant degradation efficiency were predicted based on the machine learning model and optimization methods. Regression models were established for current intensity, electrolyte concentration, and iron ion dosage parameters based on experiments with different single variables. The trained artificial neural network model accurately predicted this process's degradation efficiency and energy consumption (R = 0.985, MSE = 1.57), which was further validated in actual WWTPs. Additionally, typical WWTPs in different regions with various solar radiation resources worldwide were selected to assess the energy-saving potential of PV-supported WWTPs. This research provides an essential reference for energy management and feasibility design of PV-supported WWTPs.

Suggested Citation

  • Zhang, Wei & Zeng, Xiding & Huang, Yuan & Liang, Juan & Wang, Xinyu & Guo, Jiahong & Li, Zhangyu & Yang, Kun & Zhang, Jing, 2025. "Based on machine learning: Energy consumption optimization and energy efficiency evaluation for photovoltaic electro-fenton technology in wastewater treatment plant," Renewable Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125002885
    DOI: 10.1016/j.renene.2025.122626
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125002885
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122626?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Li & Dzakpasu, Mawuli & Yang, Baichuan & Zhang, Wushou & Yang, Yahong & Wang, Xiaochang C., 2019. "A novel index of total oxygen demand for the comprehensive evaluation of energy consumption for urban wastewater treatment," Applied Energy, Elsevier, vol. 236(C), pages 253-261.
    2. Bey, M. & Hamidat, A. & Nacer, T., 2021. "Eco-energetic feasibility study of using grid-connected photovoltaic system in wastewater treatment plant," Energy, Elsevier, vol. 216(C).
    3. Zhang, Bingqian & Yan, Kun & Lyu, Yizheng & Qian, Yisen & Gao, Hanbo & Tian, Jinping & Zheng, Wei & Chen, Lyujun, 2024. "A “water and carbon” near-zero emission WWTP system: Model development and techno-economic-environmental benefits assessment," Applied Energy, Elsevier, vol. 371(C).
    4. Chen, Xin & Zhou, Wenjia, 2022. "Economic and ecological assessment of photovoltaic systems for wastewater treatment plants in China," Renewable Energy, Elsevier, vol. 191(C), pages 852-867.
    5. Franziska Hönig & Ganesh Deepak Rupakula & Diana Duque-Gonzalez & Matthias Ebert & Ulrich Blum, 2023. "Enhancing the Levelized Cost of Hydrogen with the Usage of the Byproduct Oxygen in a Wastewater Treatment Plant," Energies, MDPI, vol. 16(12), pages 1-23, June.
    6. Close, Josie & Ip, Jasper & Lam, K.H., 2006. "Water recycling with PV-powered UV-LED disinfection," Renewable Energy, Elsevier, vol. 31(11), pages 1657-1664.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Runxi & Huang, Runyao & Shen, Ziheng & Wang, Hongtao & Xu, Jin, 2021. "Optimizing the recovery pathway of a net-zero energy wastewater treatment model by balancing energy recovery and eco-efficiency," Applied Energy, Elsevier, vol. 298(C).
    2. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Engstam, Linus & Janke, Leandro & Sundberg, Cecilia & Nordberg, Åke, 2025. "Optimising power-to-gas integration with wastewater treatment and biogas: A techno-economic assessment of CO2 and by-product utilisation," Applied Energy, Elsevier, vol. 377(PB).
    4. Xianying Li & Feng Xu & Nan Xiang & Yating Wang & Yingkui Zhang, 2019. "Dynamic Optimized Cleaner Production Strategies to Improve Water Environment and Economic Development in Leather Industrial Parks: A Case Study in Xinji, China," Sustainability, MDPI, vol. 11(23), pages 1-18, December.
    5. Elio, Joseph & Milcarek, Ryan J., 2022. "Techno-economic analysis and case study of combined heat and power systems in a wastewater treatment plant," Energy, Elsevier, vol. 260(C).
    6. Zhu, Wenjing & Duan, Cuncun & Chen, Bin, 2024. "Energy efficiency assessment of wastewater treatment plants in China based on multiregional input–output analysis and data envelopment analysis," Applied Energy, Elsevier, vol. 356(C).
    7. Yan, Peng & Shi, Hong-Xin & Chen, You-Peng & Gao, Xu & Fang, Fang & Guo, Jin-Song, 2020. "Optimization of recovery and utilization pathway of chemical energy from wastewater pollutants by a net-zero energy wastewater treatment model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Manfrida, Giampaolo & Petela, Karolina & Rossi, Federico, 2017. "Natural circulation solar thermal system for water disinfection," Energy, Elsevier, vol. 141(C), pages 1204-1214.
    9. Sangyeol Jo & Rahul Kadam & Heewon Jang & Dongyun Seo & Jungyu Park, 2024. "Recent Advances in Wastewater Electrocoagulation Technologies: Beyond Chemical Coagulation," Energies, MDPI, vol. 17(23), pages 1-26, November.
    10. Mehdi Sharif Shourjeh & Przemysław Kowal & Jakub Drewnowski & Bartosz Szeląg & Aleksandra Szaja & Grzegorz Łagód, 2020. "Mutual Interaction between Temperature and DO Set Point on AOB and NOB Activity during Shortcut Nitrification in a Sequencing Batch Reactor in Terms of Energy Consumption Optimization," Energies, MDPI, vol. 13(21), pages 1-21, November.
    11. Jiang, Joe-Air & Wang, Jen-Cheng & Kuo, Kun-Chang & Su, Yu-Li & Shieh, Jyh-Cherng & Chou, Jui-Jen, 2012. "Analysis of the junction temperature and thermal characteristics of photovoltaic modules under various operation conditions," Energy, Elsevier, vol. 44(1), pages 292-301.
    12. Zhao, Chuandang & Tu, Jiancheng & Zhang, Xiaoxuan & Xu, Jiuping & Østergaard, Poul Alberg, 2025. "Predict-then-optimise based day-ahead scheduling towards demand response and hybrid renewable generation for wastewater treatment," Applied Energy, Elsevier, vol. 384(C).
    13. Chen, Xin & Zhou, Wenjia, 2022. "Economic and ecological assessment of photovoltaic systems for wastewater treatment plants in China," Renewable Energy, Elsevier, vol. 191(C), pages 852-867.
    14. Xu, Jiuping & Zhao, Chuandang & Wang, Fengjuan & Yang, Guocan, 2022. "Industrial decarbonisation oriented distributed renewable generation towards wastewater treatment sector: Case from the Yangtze River Delta region in China," Energy, Elsevier, vol. 256(C).
    15. Wei Chen & Yuhui Xie & Chengxin Wang & Yong Geng & Xueping Tan, 2025. "Coupling Coordination Analysis of Water, Energy, and Carbon Footprints for Wastewater Treatment Plants," Sustainability, MDPI, vol. 17(6), pages 1-18, March.
    16. Moazeni, Faegheh & Khazaei, Javad, 2021. "Co-optimization of wastewater treatment plants interconnected with smart grids," Applied Energy, Elsevier, vol. 298(C).
    17. Nabila Abid & Junaid Aftab & Aamir Javed, 2025. "The impact of green technological innovation and environmental policy on ecological sustainability: evidence from leading economies," Letters in Spatial and Resource Sciences, Springer, vol. 18(1), pages 1-28, December.
    18. Jiang, Joe-Air & Su, Yu-Li & Shieh, Jyh-Cherng & Kuo, Kun-Chang & Lin, Tzu-Shiang & Lin, Ta-Te & Fang, Wei & Chou, Jui-Jen & Wang, Jen-Cheng, 2014. "On application of a new hybrid maximum power point tracking (MPPT) based photovoltaic system to the closed plant factory," Applied Energy, Elsevier, vol. 124(C), pages 309-324.
    19. Zhang, Bingqian & Yan, Kun & Lyu, Yizheng & Qian, Yisen & Gao, Hanbo & Tian, Jinping & Zheng, Wei & Chen, Lyujun, 2024. "A “water and carbon” near-zero emission WWTP system: Model development and techno-economic-environmental benefits assessment," Applied Energy, Elsevier, vol. 371(C).
    20. Joana Cassidy & Tatiana Silva & Nuno Semião & Pedro Ramalho & Ana Rita Santos & João Faria Feliciano & Catarina Silva & Maria João Rosa, 2023. "Integrating Reliability and Energy Efficiency Assessments for Pinpointing Actionable Strategies for Enhanced Performance of Urban Wastewater Treatment Plants," Sustainability, MDPI, vol. 15(17), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125002885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.