IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v384y2025ics0306261925001643.html
   My bibliography  Save this article

Predict-then-optimise based day-ahead scheduling towards demand response and hybrid renewable generation for wastewater treatment

Author

Listed:
  • Zhao, Chuandang
  • Tu, Jiancheng
  • Zhang, Xiaoxuan
  • Xu, Jiuping
  • Østergaard, Poul Alberg

Abstract

Promoting a 100% renewable energy system requires intelligent scheduling strategies, yet the challenge remains on the prediction and optimisation of variable renewable energy supply and demand. This study proposes a Predict-then-optimise paradigm to explore day-ahead scheduling strategies for high renewable energy systems and demonstrates its application in a grid-connected biogas–solar–wind-storage system with load shifting for wastewater treatment plants. The scheduling strategy aims to maximise energy prosumption and minimise operation costs. Demand response is enabled by the wastewater pre-treatment reservoir, battery storage, and biogas storage, all mathematically modelled in this study. The Temporal Convolutional Network-based Transformer model is applied to forecast uncertain variable renewable energy generation and wastewater flow for the upcoming day. Then budget uncertainty sets are constructed based on forecast errors for robust optimisation. A case from Sichuan, China is analysed to explore the practicality and effectiveness of the proposed framework. The results indicate that the robustness of the model increases the day-head scheduling operational cost and decreases the self-sufficiency ratio. Wastewater pre-treatment reservoir scheduling can effectively shift the demand load, promoting cost reduction and system prosumption; besides, pre-treatment reservoir, battery storage and biogas storage have substitution and combination effects on demand response, can reduce daily operating costs by 20%–50%. The influence of a defined allowable sale ratio, seasons, and weather conditions are also discussed. Overall, the proposed predict-then-optimise framework is an effective solution for the upcoming day’s decision-making.

Suggested Citation

  • Zhao, Chuandang & Tu, Jiancheng & Zhang, Xiaoxuan & Xu, Jiuping & Østergaard, Poul Alberg, 2025. "Predict-then-optimise based day-ahead scheduling towards demand response and hybrid renewable generation for wastewater treatment," Applied Energy, Elsevier, vol. 384(C).
  • Handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925001643
    DOI: 10.1016/j.apenergy.2025.125434
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925001643
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125434?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    2. Ma, Chao & Xu, Ximeng & Pang, Xiulan & Li, Xiaofeng & Zhang, Pengfei & Liu, Lu, 2024. "Scenario-based ultra-short-term rolling optimal operation of a photovoltaic-energy storage system under forecast uncertainty," Applied Energy, Elsevier, vol. 356(C).
    3. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Shen, Yanwen & Linville, Jessica L. & Urgun-Demirtas, Meltem & Mintz, Marianne M. & Snyder, Seth W., 2015. "An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: Challenges and opportunities towards energy-neutral WWTPs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 346-362.
    5. Al-Dahidi, Sameer & Alrbai, Mohammad & Al-Ghussain, Loiy & Alahmer, Ali, 2024. "Maximizing energy efficiency in wastewater treatment plants: A data-driven approach for waste heat recovery and an economic analysis using Organic Rankine Cycle and thermal energy storage," Applied Energy, Elsevier, vol. 362(C).
    6. Bey, M. & Hamidat, A. & Nacer, T., 2021. "Eco-energetic feasibility study of using grid-connected photovoltaic system in wastewater treatment plant," Energy, Elsevier, vol. 216(C).
    7. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    8. Odabaş Baş, Gözde & Aydınalp Köksal, Merih, 2022. "Environmental and techno-economic analysis of the integration of biogas and solar power systems into urban wastewater treatment plants," Renewable Energy, Elsevier, vol. 196(C), pages 579-597.
    9. Lu Lu & Jeremy S. Guest & Catherine A. Peters & Xiuping Zhu & Greg H. Rau & Zhiyong Jason Ren, 2018. "Wastewater treatment for carbon capture and utilization," Nature Sustainability, Nature, vol. 1(12), pages 750-758, December.
    10. Johannsen, Rasmus Magni & Mathiesen, Brian Vad & Kermeli, Katerina & Crijns-Graus, Wina & Østergaard, Poul Alberg, 2023. "Exploring pathways to 100% renewable energy in European industry," Energy, Elsevier, vol. 268(C).
    11. Østergaard, Poul Alberg & Andersen, Anders N., 2021. "Variable taxes promoting district heating heat pump flexibility," Energy, Elsevier, vol. 221(C).
    12. Madurai Elavarasan, Rajvikram & Nadarajah, Mithulananthan & Pugazhendhi, Rishi & Sinha, Avik & Gangatharan, Sivasankar & Chiaramonti, David & Abou Houran, Mohamad, 2023. "The untold subtlety of energy consumption and its influence on policy drive towards Sustainable Development Goal 7," Applied Energy, Elsevier, vol. 334(C).
    13. Jose M. Gonzalez & James E. Tomlinson & Eduardo A. Martínez Ceseña & Mohammed Basheer & Emmanuel Obuobie & Philip T. Padi & Salifu Addo & Rasheed Baisie & Mikiyas Etichia & Anthony Hurford & Andrea Bo, 2023. "Designing diversified renewable energy systems to balance multisector performance," Nature Sustainability, Nature, vol. 6(4), pages 415-427, April.
    14. Skoczkowski, Tadeusz & Bielecki, Sławomir & Wołowicz, Marcin & Sobczak, Lidia & Węglarz, Arkadiusz & Gilewski, Paweł, 2024. "Participation in demand side response. Are individual energy users interested in this?," Renewable Energy, Elsevier, vol. 232(C).
    15. Brok, Niclas Brabrand & Munk-Nielsen, Thomas & Madsen, Henrik & Stentoft, Peter A., 2020. "Unlocking energy flexibility of municipal wastewater aeration using predictive control to exploit price differences in power markets," Applied Energy, Elsevier, vol. 280(C).
    16. Kang, Hyuna & Jung, Seunghoon & Kim, Hakpyeong & Jeoung, Jaewon & Hong, Taehoon, 2024. "Reinforcement learning-based optimal scheduling model of battery energy storage system at the building level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    17. Seier, Maximilian & Schebek, Liselotte, 2017. "Model-based investigation of residual load smoothing through dynamic electricity purchase: The case of wastewater treatment plants in Germany," Applied Energy, Elsevier, vol. 205(C), pages 210-224.
    18. Ali, Syed Muhammad Hassan & Lenzen, Manfred & Sack, Fabian & Yousefzadeh, Moslem, 2020. "Electricity generation and demand flexibility in wastewater treatment plants: Benefits for 100% renewable electricity grids," Applied Energy, Elsevier, vol. 268(C).
    19. Taozeng Zhu & Jingui Xie & Melvyn Sim, 2022. "Joint Estimation and Robustness Optimization," Management Science, INFORMS, vol. 68(3), pages 1659-1677, March.
    20. Mehr, A.S. & Gandiglio, M. & MosayebNezhad, M. & Lanzini, A. & Mahmoudi, S.M.S. & Yari, M. & Santarelli, M., 2017. "Solar-assisted integrated biogas solid oxide fuel cell (SOFC) installation in wastewater treatment plant: Energy and economic analysis," Applied Energy, Elsevier, vol. 191(C), pages 620-638.
    21. Wang, Yunqi & Wang, Hao & Razzaghi, Reza & Jalili, Mahdi & Liebman, Ariel, 2024. "Multi-objective coordinated EV charging strategy in distribution networks using an improved augmented epsilon-constrained method," Applied Energy, Elsevier, vol. 369(C).
    22. Wang, Fengjuan & Xie, Yachen & Xu, Jiuping, 2019. "Reliable-economical equilibrium based short-term scheduling towards hybrid hydro-photovoltaic generation systems: Case study from China," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    23. Mohamed, Ahmed & Kanwhen, Ondrea & Bobker, Michael, 2022. "Distributed energy resources for water resource recovery facilities: A metropolitan city case study," Applied Energy, Elsevier, vol. 327(C).
    24. Zhu, Yansong & Liu, Jizhen & Hu, Yong & Xie, Yan & Zeng, Deliang & Li, Ruilian, 2024. "Distributionally robust optimization model considering deep peak shaving and uncertainty of renewable energy," Energy, Elsevier, vol. 288(C).
    25. Xu, Jiuping & Zhao, Chuandang & Wang, Fengjuan & Yang, Guocan, 2022. "Industrial decarbonisation oriented distributed renewable generation towards wastewater treatment sector: Case from the Yangtze River Delta region in China," Energy, Elsevier, vol. 256(C).
    26. A. T. D. Perera & Vahid M. Nik & Deliang Chen & Jean-Louis Scartezzini & Tianzhen Hong, 2020. "Quantifying the impacts of climate change and extreme climate events on energy systems," Nature Energy, Nature, vol. 5(2), pages 150-159, February.
    27. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    28. Zhao, Chuandang & Wang, Fengjuan & Xu, Jiuping & Tan, Cheng & Østergaard, Poul Alberg, 2024. "Optimal planning and operation for a grid-connected solar–wind–hydro energy system in wastewater treatment plants," Renewable Energy, Elsevier, vol. 230(C).
    29. Venkatesh, G. & Elmi, Rashid Abdi, 2013. "Economic–environmental analysis of handling biogas from sewage sludge digesters in WWTPs (wastewater treatment plants) for energy recovery: Case study of Bekkelaget WWTP in Oslo (Norway)," Energy, Elsevier, vol. 58(C), pages 220-235.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Chuandang & Wang, Fengjuan & Xu, Jiuping & Tan, Cheng & Østergaard, Poul Alberg, 2024. "Optimal planning and operation for a grid-connected solar–wind–hydro energy system in wastewater treatment plants," Renewable Energy, Elsevier, vol. 230(C).
    2. Zhao, Chuandang & Xu, Jiuping & Wang, Fengjuan, 2025. "Industrial prosumption-based energy transition technologies investigation for wastewater sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    3. Xu, Jiuping & Zhao, Chuandang & Wang, Fengjuan & Yang, Guocan, 2022. "Industrial decarbonisation oriented distributed renewable generation towards wastewater treatment sector: Case from the Yangtze River Delta region in China," Energy, Elsevier, vol. 256(C).
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Derick Lima & Li Li & Gregory Appleby, 2024. "A Review of Renewable Energy Technologies in Municipal Wastewater Treatment Plants (WWTPs)," Energies, MDPI, vol. 17(23), pages 1-52, December.
    6. Caixin Yan & Zhifeng Qiu, 2025. "Review of Power Market Optimization Strategies Based on Industrial Load Flexibility," Energies, MDPI, vol. 18(7), pages 1-41, March.
    7. Roksana Yasmin & B. M. Ruhul Amin & Rakibuzzaman Shah & Andrew Barton, 2024. "A Survey of Commercial and Industrial Demand Response Flexibility with Energy Storage Systems and Renewable Energy," Sustainability, MDPI, vol. 16(2), pages 1-41, January.
    8. Misrol, Mohd Arif & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Manan, Zainuddin Abd, 2022. "Optimising renewable energy at the eco-industrial park: A mathematical modelling approach," Energy, Elsevier, vol. 261(PB).
    9. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    10. Saxena, Vivek & Kumar, Narendra & Manna, Saibal & Rajput, Saurabh Kumar & Agarwal, Kusum Lata & Diwania, Sourav & Gupta, Varun, 2025. "Modelling, solution and application of optimization techniques in HRES: From conventional to artificial intelligence," Applied Energy, Elsevier, vol. 380(C).
    11. Mehr, A.S. & Moharramian, A. & Hossainpour, S. & Pavlov, Denis A., 2020. "Effect of blending hydrogen to biogas fuel driven from anaerobic digestion of wastewater on the performance of a solid oxide fuel cell system," Energy, Elsevier, vol. 202(C).
    12. Yu Wang & Yu Zhang & Minglong Zhou & Jiafu Tang, 2023. "Feature‐driven robust surgery scheduling," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1921-1938, June.
    13. Nielsen, Steffen & Østergaard, Poul Alberg & Sperling, Karl, 2023. "Renewable energy transition, transmission system impacts and regional development – a mismatch between national planning and local development," Energy, Elsevier, vol. 278(PA).
    14. Strazzabosco, A. & Kenway, S.J. & Conrad, S.A. & Lant, P.A., 2021. "Renewable electricity generation in the Australian water industry: Lessons learned and challenges for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    15. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    16. Xu, Jiuping & Tian, Yalou & Wang, Fengjuan & Yang, Guocan & Zhao, Chuandang, 2024. "Resilience-economy-environment equilibrium based configuration interaction approach towards distributed energy system in energy intensive industry parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    17. Wang, Chenxuan & Li, Zhiwei & Tan, Raymond R. & Aviso, Kathleen B. & Wang, Fang & Jia, Xiaoping, 2024. "Feasibility analysis for bio-natural gas generated from high-concentration organic wastewater," Energy, Elsevier, vol. 313(C).
    18. Loh, S.K. & Nasrin, A.B. & Mohamad Azri, S. & Nurul Adela, B. & Muzzammil, N. & Daryl Jay, T. & Stasha Eleanor, R.A. & Lim, W.S. & Choo, Y.M. & Kaltschmitt, M., 2017. "First Report on Malaysia’s experiences and development in biogas capture and utilization from palm oil mill effluent under the Economic Transformation Programme: Current and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1257-1274.
    19. Odabaş Baş, Gözde & Aydınalp Köksal, Merih, 2022. "Environmental and techno-economic analysis of the integration of biogas and solar power systems into urban wastewater treatment plants," Renewable Energy, Elsevier, vol. 196(C), pages 579-597.
    20. Xiong, Yu-Tong & Zhang, Jing & Chen, You-Peng & Guo, Jin-Song & Fang, Fang & Yan, Peng, 2021. "Geographic distribution of net-zero energy wastewater treatment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925001643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.