IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v191y2022icp591-607.html
   My bibliography  Save this article

Ethanol biofuel production and characteristics optimization from wheat straw hydrolysate: Performance and emission study of DI-diesel engine fueled with diesel/biodiesel/ethanol blends

Author

Listed:
  • El-Sheekh, Mostafa M.
  • Bedaiwy, Mohammed Y.
  • El-Nagar, Aya A.
  • ElKelawy, Medhat
  • Alm-Eldin Bastawissi, Hagar

Abstract

Bioethanol has been classified as the most widely utilized biofuel globally because it helps greatly decrease crude oil consumption and pollution. In this study, bioethanol production improved by 3.6-fold after optimization conditions for commercial Saccharomyces cerevisiae on hydrolysate obtained from enzymatic saccharification of Aspergillus niger to 1% NaOH pretreated wheat straw. 26.0% bioethanol was obtained after 96 h at 30 °C using 10% (W/V) inoculum size of Saccharomyces cerevisiae at pH 5.0 and 2% molasses additives under static condition. After optimization, bioethanol was produced on a large scale, and distillation was carried out, then bioethanol was characterized using Gas chromatography (GC) analysis and 1H NMR. On large-scale production, 1 kg NaOH pretreated wheat straw was fermented with Aspergillus niger to produce 10 L of hydrolysate that concentrated to 4 L using a rotary evaporator. After concentration, reducing sugar became 35.08 mg/ml, then 2% molasses were added, and the final sugar concentration became 41.7 mg/ml. Finally, reducing sugar was fermented by Saccharomyces cerevesiae to produce 1 L of bioethanol. In addition, the obtained bioethanol was blended by the commercial diesel#1/WCO biodiesel commixture with 10% and 20% by volume. The blends of 50%diesel/50%biodiesel, 10% bioethanol/45%diesel/45%biodiesel, and 20%bio ethanol/40%diesel/40%biodiesel were tested as new fuel blends in a single cylinder air-cooled direct injection diesel engine. The engine performance and emission have been recorded at different engine loads and fixed speeds of 1500 rpm. The obtained results reveal that the engine BTE has been enhanced where the engine NOx was reduced if 10% of bioethanol has been added. While increasing bioethanol to 20% by volume base increases the combustion of unburned hydrocarbon and CO emission.

Suggested Citation

  • El-Sheekh, Mostafa M. & Bedaiwy, Mohammed Y. & El-Nagar, Aya A. & ElKelawy, Medhat & Alm-Eldin Bastawissi, Hagar, 2022. "Ethanol biofuel production and characteristics optimization from wheat straw hydrolysate: Performance and emission study of DI-diesel engine fueled with diesel/biodiesel/ethanol blends," Renewable Energy, Elsevier, vol. 191(C), pages 591-607.
  • Handle: RePEc:eee:renene:v:191:y:2022:i:c:p:591-607
    DOI: 10.1016/j.renene.2022.04.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122005432
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aditiya, H.B. & Mahlia, T.M.I. & Chong, W.T. & Nur, Hadi & Sebayang, A.H., 2016. "Second generation bioethanol production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 631-653.
    2. Öztürk, Erkan & Can, Özer, 2022. "Effects of EGR, injection retardation and ethanol addition on combustion, performance and emissions of a DI diesel engine fueled with canola biodiesel/diesel fuel blend," Energy, Elsevier, vol. 244(PB).
    3. Demiray, Ekin & Karatay, Sevgi Ertuğrul & Dönmez, Gönül, 2018. "Evaluation of pomegranate peel in ethanol production by Saccharomyces cerevisiae and Pichia stipitis," Energy, Elsevier, vol. 159(C), pages 988-994.
    4. Gao, Hairong & Wang, Yanting & Yang, Qiaomei & Peng, Hao & Li, Yuqi & Zhan, Dan & Wei, Hantian & Lu, Haiwen & Bakr, Mahmoud M.A. & EI-Sheekh, Mostafa M. & Qi, Zhi & Peng, Liangcai & Lin, Xinchun, 2021. "Combined steam explosion and optimized green-liquor pretreatments are effective for complete saccharification to maximize bioethanol production by reducing lignocellulose recalcitrance in one-year-old," Renewable Energy, Elsevier, vol. 175(C), pages 1069-1079.
    5. Gaeini, M. & Rouws, A.L. & Salari, J.W.O. & Zondag, H.A. & Rindt, C.C.M., 2018. "Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage," Applied Energy, Elsevier, vol. 212(C), pages 1165-1177.
    6. Ramos, Carmen & García, Ana Salomé & Moreno, Blanca & Díaz, Guzmán, 2019. "Small-scale renewable power technologies are an alternative to reach a sustainable economic growth: Evidence from Spain," Energy, Elsevier, vol. 167(C), pages 13-25.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Navaneetha Krishnan Balakrishnan & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Huu Tho Nguyen, 2023. "An Experimental Investigation on the Characteristics of a Compression Ignition Engine Fuelled by Diesel-Palm Biodiesel–Ethanol/Propanol Based Ternary Blends," Energies, MDPI, vol. 16(2), pages 1-18, January.
    2. Samanta, Ritika & Chakraborty, Rajat, 2023. "Methyl levulinate synthesis from rice husk employing e-waste derived silica supported nano CuO–CdSO4 photocatalyst: Assessment of production environmental impacts, engine performance and emissions," Renewable Energy, Elsevier, vol. 210(C), pages 842-858.
    3. Genii Kuznetsov & Vadim Dorokhov & Ksenia Vershinina & Susanna Kerimbekova & Daniil Romanov & Ksenia Kartashova, 2023. "Composite Liquid Biofuels for Power Plants and Engines: Review," Energies, MDPI, vol. 16(16), pages 1-20, August.
    4. El-Sheekh, Mostafa M. & El-Nagar, Aya A. & ElKelawy, Medhat & Bastawissi, Hagar Alm-Eldin, 2023. "Maximization of bioethanol productivity from wheat straw, performance and emission analysis of diesel engine running with a triple fuel blend through response surface methodology," Renewable Energy, Elsevier, vol. 211(C), pages 706-722.
    5. Sujeet Kesharvani & Gaurav Dwivedi & Tikendra Nath Verma & Puneet Verma, 2022. "The Experimental Investigation of a Diesel Engine Using Ternary Blends of Algae Biodiesel, Ethanol and Diesel Fuels," Energies, MDPI, vol. 16(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grant Allan & Kevin Connolly & Peter McGregor & Andrew G Ross, 2019. "Economic activity supported by offshore wind: a hypothetical extraction study," Working Papers 1911, University of Strathclyde Business School, Department of Economics.
    2. Taghizadeh-Alisaraei, Ahmad & Motevali, Ali & Ghobadian, Barat, 2019. "Ethanol production from date wastes: Adapted technologies, challenges, and global potential," Renewable Energy, Elsevier, vol. 143(C), pages 1094-1110.
    3. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    4. Shkatulov, A.I. & Houben, J. & Fischer, H. & Huinink, H.P., 2020. "Stabilization of K2CO3 in vermiculite for thermochemical energy storage," Renewable Energy, Elsevier, vol. 150(C), pages 990-1000.
    5. Liu, Zihe & Moradi, Hamideh & Shi, Shuobo & Darvishi, Farshad, 2021. "Yeasts as microbial cell factories for sustainable production of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
    7. Benjamin Fumey & Luca Baldini, 2021. "Static Temperature Guideline for Comparative Testing of Sorption Heat Storage Systems for Building Application," Energies, MDPI, vol. 14(13), pages 1-15, June.
    8. Chen, Wei-Ming & Kim, Hana, 2020. "Energy, economic, and social impacts of a clean energy economic policy: Fuel cells deployment in Delaware," Energy Policy, Elsevier, vol. 144(C).
    9. Brumana, Giovanni & Franchini, Giuseppe & Ghirardi, Elisa & Perdichizzi, Antonio, 2022. "Techno-economic optimization of hybrid power generation systems: A renewables community case study," Energy, Elsevier, vol. 246(C).
    10. Emanuela Mastronardo & Emanuele La Mazza & Davide Palamara & Elpida Piperopoulos & Daniela Iannazzo & Edoardo Proverbio & Candida Milone, 2022. "Organic Salt Hydrate as a Novel Paradigm for Thermal Energy Storage," Energies, MDPI, vol. 15(12), pages 1-13, June.
    11. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    12. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
    13. Gowrishankar, Sudarshan & Krishnasamy, Anand, 2023. "Emulsification – A promising approach to improve performance and reduce exhaust emissions of a biodiesel fuelled light-duty diesel engine," Energy, Elsevier, vol. 263(PC).
    14. Salviati, Sergio & Carosio, Federico & Cantamessa, Francesco & Medina, Lilian & Berglund, Lars A. & Saracco, Guido & Fina, Alberto, 2020. "Ice-templated nanocellulose porous structure enhances thermochemical storage kinetics in hydrated salt/graphite composites," Renewable Energy, Elsevier, vol. 160(C), pages 698-706.
    15. Omojola Awogbemi & Daramy Vandi Von Kallon & Emmanuel Idoko Onuh & Victor Sunday Aigbodion, 2021. "An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications," Energies, MDPI, vol. 14(18), pages 1-43, September.
    16. Ocreto, Jherwin B. & Chen, Wei-Hsin & Ubando, Aristotle T. & Park, Young-Kwon & Sharma, Amit Kumar & Ashokkumar, Veeramuthu & Ok, Yong Sik & Kwon, Eilhann E. & Rollon, Analiza P. & De Luna, Mark Danie, 2021. "A critical review on second- and third-generation bioethanol production using microwaved-assisted heating (MAH) pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    17. Holmatov, B. & Schyns, J.F. & Krol, M.S. & Gerbens-Leenes, P.W. & Hoekstra, A.Y., 2021. "Can crop residues provide fuel for future transport? Limited global residue bioethanol potentials and large associated land, water and carbon footprints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    18. Yihan Wang & Zicheng Zhang & Shuli Liu & Zhihao Wang & Yongliang Shen, 2023. "Development and Characteristics Analysis of Novel Hydrated Salt Composite Adsorbents for Thermochemical Energy Storage," Energies, MDPI, vol. 16(18), pages 1-21, September.
    19. Palacios, Anabel & Elena Navarro, M. & Barreneche, Camila & Ding, Yulong, 2020. "Hybrid 3 in 1 thermal energy storage system – Outlook for a novel storage strategy," Applied Energy, Elsevier, vol. 274(C).
    20. Sergii V. Sagin & Sergii S. Sagin & Volodymyr Madey, 2023. "Analysis of methods of managing the environmental safety of the navigation passage of ships of maritime transport," Technology audit and production reserves, PC TECHNOLOGY CENTER, vol. 4(3(72)), pages 33-42, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:191:y:2022:i:c:p:591-607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.