IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v190y2022icp425-433.html

Enhancement of partial oxidation reformer by the free-section addition for hydrogen production

Author

Listed:
  • Dai, Huaming
  • Zhu, Huiwei

Abstract

Hydrogen production by the partial oxidation combustion in porous media provides an efficient utilization for renewable biogas. In this paper, the free section with lengths of 0, 5, 10, 15 mm were designed in the middle of two-section porous media respectively. The effects of free section addition on the temperature distribution and methane conversion were investigated to determine the optimal burner parameters at the operating conditions of different velocities and equivalence ratios. Results indicate that the highest temperature appeared in the free length of 10 mm but the maximum of H2 energy conversion efficiency was in that of 15 mm. For the Al2O3 ceramic foam of 20 PPI, the better heat recirculation and preheating effect were shown between the gas and solid. However, the productions of H2 and CO at the 10 PPI burner reached the highest. With the increasing of equivalence ratio from 1.4 to 1.8, the energy conversion efficiency of syngas rose from 41% to 61% with the 15 mm free length. The appropriate free section addition contributes to improving the reforming efficiency, which provides a new way for the burner design.

Suggested Citation

  • Dai, Huaming & Zhu, Huiwei, 2022. "Enhancement of partial oxidation reformer by the free-section addition for hydrogen production," Renewable Energy, Elsevier, vol. 190(C), pages 425-433.
  • Handle: RePEc:eee:renene:v:190:y:2022:i:c:p:425-433
    DOI: 10.1016/j.renene.2022.03.124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122004086
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.03.124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Santos-Clotas, Eric & Cabrera-Codony, Alba & Martín, Maria J., 2020. "Coupling adsorption with biotechnologies for siloxane abatement from biogas," Renewable Energy, Elsevier, vol. 153(C), pages 314-323.
    2. Mujeebu, M. Abdul & Abdullah, M.Z. & Bakar, M.Z. Abu & Mohamad, A.A. & Abdullah, M.K., 2009. "Applications of porous media combustion technology - A review," Applied Energy, Elsevier, vol. 86(9), pages 1365-1375, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dai, Hongchao & Dai, Huaming, 2022. "Green hydrogen production based on the co-combustion of wood biomass and porous media," Applied Energy, Elsevier, vol. 324(C).
    2. Dai, Huaming & Song, Ziwei & Wang, Hongting & Cui, Qingyuan, 2023. "Efficient production of hydrogen by catalytic decomposition of methane with Fe-substituted hexaaluminate coated packed bed," Energy, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Zangeneh, Vahid & Alipoor, Alireza, 2021. "Stability study of hydrogen-air flame in a conical porous burner," Energy, Elsevier, vol. 215(PB).
    3. Zeng, Jimin & Liu, Lidong & Liang, Xiao & Chen, Shihe & Yuan, Jun, 2021. "Evaluating fuel consumption factor for energy conservation and carbon neutral on an industrial thermal power unit," Energy, Elsevier, vol. 232(C).
    4. Li, Q.Y. & Wang, L. & Ju, Y.L., 2011. "Analysis of flammability limits for the liquefaction process of oxygen-bearing coal-bed methane," Applied Energy, Elsevier, vol. 88(9), pages 2934-2939.
    5. Chen, Guan-Bang & Li, Yueh-Heng & Cheng, Tsarng-Sheng & Chao, Yei-Chin, 2013. "Chemical effect of hydrogen peroxide addition on characteristics of methane–air combustion," Energy, Elsevier, vol. 55(C), pages 564-570.
    6. Zhang, Yuyao & Kawasaki, Yu & Oshita, Kazuyuki & Takaoka, Masaki & Minami, Daisuke & Inoue, Go & Tanaka, Toshihiro, 2021. "Economic assessment of biogas purification systems for removal of both H2S and siloxane from biogas," Renewable Energy, Elsevier, vol. 168(C), pages 119-130.
    7. Zhu, Mingming & Ma, Yu & Zhang, Dongke, 2012. "Effect of a homogeneous combustion catalyst on the combustion characteristics and fuel efficiency in a diesel engine," Applied Energy, Elsevier, vol. 91(1), pages 166-172.
    8. Ali, Muhammad Khurram & Nasir, Alishba & Abbasi, Kainat Jamil & Sajid, Muhammad, 2024. "A comparative multidimensional evaluation of parameters and alternatives for transformation of sustainable cement production in Pakistan," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    9. Pan, J.F. & Wu, D. & Liu, Y.X. & Zhang, H.F. & Tang, A.K. & Xue, H., 2015. "Hydrogen/oxygen premixed combustion characteristics in micro porous media combustor," Applied Energy, Elsevier, vol. 160(C), pages 802-807.
    10. Makaryan, Iren A. & Sedov, Igor V. & Munoz-Herrera, Claudio & Toledo, Mario & Salgansky, Eugene A., 2025. "Combustion of ammonia-blended fuels in porous media burners, with storage and distribution implications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 220(C).
    11. Janvekar, Ayub Ahmed & Miskam, M.A. & Abas, Aizat & Ahmad, Zainal Arifin & Juntakan, T. & Abdullah, M.Z., 2017. "Effects of the preheat layer thickness on surface/submerged flame during porous media combustion of micro burner," Energy, Elsevier, vol. 122(C), pages 103-110.
    12. Ling, Zhongqian & Lu, Ling & Zeng, Xianyang & Kuang, Min & Ling, Bo & Gao, Chuanji & Zhou, Chao, 2023. "Ethylene combustion performance with varying the N2 content in a porous burner," Energy, Elsevier, vol. 262(PA).
    13. Mehdi Ali Ehyaei & Mehdi Tanehkar & Marc A. Rosen, 2016. "Analysis of an Internal Combustion Engine Using Porous Foams for Thermal Energy Recovery," Sustainability, MDPI, vol. 8(3), pages 1-11, March.
    14. Gao, Huai-Bin & Qu, Zhi-Guo & He, Ya-ling & Tao, Wen-Quan, 2012. "Experimental study of combustion in a double-layer burner packed with alumina pellets of different diameters," Applied Energy, Elsevier, vol. 100(C), pages 295-302.
    15. Adewole, Bamiji Z. & Abidakun, Olatunde A. & Asere, Abraham A., 2013. "Artificial neural network prediction of exhaust emissions and flame temperature in LPG (liquefied petroleum gas) fueled low swirl burner," Energy, Elsevier, vol. 61(C), pages 606-611.
    16. Jithin, E.V. & Raghuram, G.K.S. & Keshavamurthy, T.V. & Velamati, Ratna Kishore & Prathap, Chockalingam & Varghese, Robin John, 2021. "A review on fundamental combustion characteristics of syngas mixtures and feasibility in combustion devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    17. Akbari, M.H. & Riahi, P. & Roohi, R., 2009. "Lean flammability limits for stable performance with a porous burner," Applied Energy, Elsevier, vol. 86(12), pages 2635-2643, December.
    18. Devi, Sangjukta & Sahoo, Niranjan & Muthukumar, P., 2020. "Experimental studies on biogas combustion in a novel double layer inert Porous Radiant Burner," Renewable Energy, Elsevier, vol. 149(C), pages 1040-1052.
    19. Edyta Słupek & Patrycja Makoś & Jacek Gębicki, 2020. "Theoretical and Economic Evaluation of Low-Cost Deep Eutectic Solvents for Effective Biogas Upgrading to Bio-Methane," Energies, MDPI, vol. 13(13), pages 1-19, July.
    20. Huaibin Gao & Yongyong Wang & Shouchao Zong & Yu Ma & Chuanwei Zhang, 2023. "Experimental Investigation of a Self-Sustained Liquid Fuel Burner Using Inert Porous Media," Energies, MDPI, vol. 16(14), pages 1-18, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:190:y:2022:i:c:p:425-433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.