IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i3p267-d65626.html
   My bibliography  Save this article

Analysis of an Internal Combustion Engine Using Porous Foams for Thermal Energy Recovery

Author

Listed:
  • Mehdi Ali Ehyaei

    (Department of Mechanical Engineering, Pardis Branch, Islamic Azad University, Pardis New City 14778-93855, Iran)

  • Mehdi Tanehkar

    (Department of Mechanical Engineering, Boroujerd Science and Research Branch, Islamic Azad University, Boroujerd 14778-93995, Iran)

  • Marc A. Rosen

    (Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1H 7K4, Canada)

Abstract

Homogeneous and complete combustion in internal combustion engines is advantageous. The use of a porous foam in the exhaust gas in an engine cylinder for heat recovery is examined here with the aim of reducing engine emissions. The internal combustion engine with a porous core regenerator is modeled using SOPHT software, which solved the differential equations for the thermal circuit in the engine. The engine thermal efficiency is observed to increase from 43% to 53% when the porous core regenerator is applied. Further, raising the compression ratio causes the peak pressure and thermal efficiency to increase, e.g., increasing the compression ratio from 13 to 15 causes the thermal efficiency and output work to increase from 53% to 55% and from 4.86 to 4.93 kJ, respectively. The regenerator can also be used as a catalytic converter for fine particles and some other emissions. The regenerator oxidizes unburned hydrocarbons. Meanwhile, heat recovered from the exhaust gases can reduce fuel consumption, further reducing pollutant emissions from the internal combustion engine.

Suggested Citation

  • Mehdi Ali Ehyaei & Mehdi Tanehkar & Marc A. Rosen, 2016. "Analysis of an Internal Combustion Engine Using Porous Foams for Thermal Energy Recovery," Sustainability, MDPI, vol. 8(3), pages 1-11, March.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:3:p:267-:d:65626
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/3/267/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/3/267/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chou, S.K. & Yang, W.M. & Li, J. & Li, Z.W., 2010. "Porous media combustion for micro thermophotovoltaic system applications," Applied Energy, Elsevier, vol. 87(9), pages 2862-2867, September.
    2. Fu, Jianqin & Liu, Jingping & Ren, Chengqin & Wang, Linjun & Deng, Banglin & Xu, Zhengxin, 2012. "An open steam power cycle used for IC engine exhaust gas energy recovery," Energy, Elsevier, vol. 44(1), pages 544-554.
    3. Mujeebu, M. Abdul & Abdullah, M.Z. & Bakar, M.Z. Abu & Mohamad, A.A. & Abdullah, M.K., 2009. "Applications of porous media combustion technology - A review," Applied Energy, Elsevier, vol. 86(9), pages 1365-1375, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng Yue & Mao-Zhao Xie & Jun-Rui Shi & Hong-Sheng Liu & Zhong-Shan Chen & Ya-Chao Chang, 2020. "Numerical and Experimental Investigations on Combustion Characteristics of Premixed Lean Methane–Air in a Staggered Arrangement Burner with Discrete Cylinders," Energies, MDPI, vol. 13(23), pages 1-13, December.
    2. Pan, J.F. & Wu, D. & Liu, Y.X. & Zhang, H.F. & Tang, A.K. & Xue, H., 2015. "Hydrogen/oxygen premixed combustion characteristics in micro porous media combustor," Applied Energy, Elsevier, vol. 160(C), pages 802-807.
    3. Banerjee, Abhisek & Paul, Diplina, 2021. "Developments and applications of porous medium combustion: A recent review," Energy, Elsevier, vol. 221(C).
    4. Gentillon, Philippe & Singh, Siddharth & Lakshman, Suhas & Zhang, Zhaolun & Paduthol, Appu & Ekins-Daukes, N.J. & Chan, Qing N. & Taylor, Robert A., 2019. "A comprehensive experimental characterisation of a novel porous media combustion-based thermophotovoltaic system with controlled emission," Applied Energy, Elsevier, vol. 254(C).
    5. Ismail, Ahmad Kamal & Abdullah, Mohd Zulkifly & Zubair, Mohammed & Ahmad, Zainal Arifin & Jamaludin, Abdul Rashid & Mustafa, Khairil Faizi & Abdullah, Mohamad Nazir, 2013. "Application of porous medium burner with micro cogeneration system," Energy, Elsevier, vol. 50(C), pages 131-142.
    6. Gentillon, Philippe & Southcott, Jake & Chan, Qing N. & Taylor, Robert A., 2018. "Stable flame limits for optimal radiant performance of porous media reactors for thermophotovoltaic applications using packed beds of alumina," Applied Energy, Elsevier, vol. 229(C), pages 736-744.
    7. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Tang, Aikun & Deng, Jiang & Cai, Tao & Xu, Yiming & Pan, Jianfeng, 2017. "Combustion characteristics of premixed propane/hydrogen/air in the micro-planar combustor with different channel-heights," Applied Energy, Elsevier, vol. 203(C), pages 635-642.
    9. Chen, Guan-Bang & Li, Yueh-Heng & Cheng, Tsarng-Sheng & Chao, Yei-Chin, 2013. "Chemical effect of hydrogen peroxide addition on characteristics of methane–air combustion," Energy, Elsevier, vol. 55(C), pages 564-570.
    10. Jiaqiang, E. & Zuo, Wei & Liu, Xueling & Peng, Qingguo & Deng, Yuanwang & Zhu, Hao, 2016. "Effects of inlet pressure on wall temperature and exergy efficiency of the micro-cylindrical combustor with a step," Applied Energy, Elsevier, vol. 175(C), pages 337-345.
    11. Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Li, Shaobo & Li, Zhenwei & Xu, Hongpeng & Fu, Guang, 2021. "Effects of propane addition and burner scale on the combustion characteristics and working performance," Applied Energy, Elsevier, vol. 285(C).
    12. Zhu, Mingming & Ma, Yu & Zhang, Dongke, 2012. "Effect of a homogeneous combustion catalyst on the combustion characteristics and fuel efficiency in a diesel engine," Applied Energy, Elsevier, vol. 91(1), pages 166-172.
    13. Yuan, Zhipeng & Fu, Jianqin & Liu, Qi & Ma, Yinjie & Zhan, Zhangsong, 2018. "Quantitative study on influence factors of power performance of variable valve timing (VVT) engines and correction of its governing equation," Energy, Elsevier, vol. 157(C), pages 314-326.
    14. Tang, Aikun & Cai, Tao & Deng, Jiang & Zhao, Dan & Huang, Qiuhan & Zhou, Chen, 2019. "Experimental study on flame structure transitions of premixed propane/air in micro-scale planar combustors," Energy, Elsevier, vol. 179(C), pages 558-570.
    15. Wu, Zhi-Jun & Yu, Xiao & Fu, Le-Zhong & Deng, Jun & Hu, Zong-Jie & Li, Li-Guang, 2014. "A high efficiency oxyfuel internal combustion engine cycle with water direct injection for waste heat recovery," Energy, Elsevier, vol. 70(C), pages 110-120.
    16. Deng, Yuanwang & Liu, Huawei & Zhao, Xiaohuan & E, Jiaqiang & Chen, Jianmei, 2018. "Effects of cold start control strategy on cold start performance of the diesel engine based on a comprehensive preheat diesel engine model," Applied Energy, Elsevier, vol. 210(C), pages 279-287.
    17. Janvekar, Ayub Ahmed & Miskam, M.A. & Abas, Aizat & Ahmad, Zainal Arifin & Juntakan, T. & Abdullah, M.Z., 2017. "Effects of the preheat layer thickness on surface/submerged flame during porous media combustion of micro burner," Energy, Elsevier, vol. 122(C), pages 103-110.
    18. Fu, Jianqin & Liu, Jingping & Xu, Zhengxin & Ren, Chengqin & Deng, Banglin, 2013. "A combined thermodynamic cycle based on methanol dissociation for IC (internal combustion) engine exhaust heat recovery," Energy, Elsevier, vol. 55(C), pages 778-786.
    19. Zuo, Wei & E, Jiaqiang & Liu, Haili & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2016. "Numerical investigations on an improved micro-cylindrical combustor with rectangular rib for enhancing heat transfer," Applied Energy, Elsevier, vol. 184(C), pages 77-87.
    20. Devi, Sangjukta & Sahoo, Niranjan & Muthukumar, P., 2020. "Experimental studies on biogas combustion in a novel double layer inert Porous Radiant Burner," Renewable Energy, Elsevier, vol. 149(C), pages 1040-1052.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:3:p:267-:d:65626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.