IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v185y2022icp804-819.html
   My bibliography  Save this article

Effects of geometric and operating parameters on thermal performance of conical cavity receivers using supercritical CO2 as heat transfer fluid

Author

Listed:
  • Wang, Ding
  • Chen, Yuxuan
  • Xiao, Hu
  • Zhang, Yanping

Abstract

In this paper, a comprehensive optical-thermal numerical model of the conical cavity receiver using supercritical CO2 (S–CO2) as the heat transfer fluid (HTF) is established by combining ray tracing with computational fluid dynamics method, which is verified with published data in the literature. Based on the model, the effects of critical geometric parameters (tube inner diameter, aspect ratio and cone angle ratio) and operating parameters (solar direct normal irradiance (DNI), HTF inlet mass flow rate and inlet temperature) on the thermal performance of the receiver are discussed thoroughly. The results indicate that a decrease in the tube inner diameter is beneficial to improve the optical-thermal performance of the receiver. When the aspect ratio and cone angle ratio are 1.5 and 0.25, respectively, the optical-thermal conversion efficiencies reach their optima, which are 75.13% and 75.30%, respectively. Moreover, for the S–CO2 receiver with optimal geometric parameters, the HTF outlet temperature increases linearly with increasing DNI and inlet temperature. Increasing mass flow rate can improve the optical-thermal conversion efficiency, but once the flow rate exceeds 0.04 kg/s, it has little effect on the efficiency improvement. These results can provide a reference for the design and operation of the S–CO2 conical cavity receiver.

Suggested Citation

  • Wang, Ding & Chen, Yuxuan & Xiao, Hu & Zhang, Yanping, 2022. "Effects of geometric and operating parameters on thermal performance of conical cavity receivers using supercritical CO2 as heat transfer fluid," Renewable Energy, Elsevier, vol. 185(C), pages 804-819.
  • Handle: RePEc:eee:renene:v:185:y:2022:i:c:p:804-819
    DOI: 10.1016/j.renene.2021.12.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121017833
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.12.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yanping & Xiao, Hu & Zou, Chongzhe & Falcoz, Quentin & Neveu, Pierre, 2020. "Combined optics and heat transfer numerical model of a solar conical receiver with built-in helical pipe," Energy, Elsevier, vol. 193(C).
    2. Xiao, Lan & Guo, Feng-Wei & Wu, Shuang-Ying & Chen, Zhi-Li, 2020. "A comprehensive simulation on optical and thermal performance of a cylindrical cavity receiver in a parabolic dish collector system," Renewable Energy, Elsevier, vol. 145(C), pages 878-892.
    3. Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K. & Ahmad, Abdalqader, 2017. "Numerical investigation of pitch value on thermal performance of solar receiver for solar powered Brayton cycle application," Energy, Elsevier, vol. 119(C), pages 523-539.
    4. Benoit, H. & Spreafico, L. & Gauthier, D. & Flamant, G., 2016. "Review of heat transfer fluids in tube-receivers used in concentrating solar thermal systems: Properties and heat transfer coefficients," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 298-315.
    5. Yanping, Zhang & Yuxuan, Chen & Chongzhe, Zou & Hu, Xiao & Falcoz, Quentin & Neveu, Pierre & Cheng, Zhang & Xiaohong, Huang, 2021. "Experimental investigation on heat-transfer characteristics of a cylindrical cavity receiver with pressurized air in helical pipe," Renewable Energy, Elsevier, vol. 163(C), pages 320-330.
    6. Chu, Shunzhou & Bai, Fengwu & Zhang, Xiliang & Yang, Bei & Cui, Zhiying & Nie, Fuliang, 2018. "Experimental study and thermal analysis of a tubular pressurized air receiver," Renewable Energy, Elsevier, vol. 125(C), pages 413-424.
    7. Venkatachalam, Thirunavukkarasu & Cheralathan, M., 2019. "Effect of aspect ratio on thermal performance of cavity receiver for solar parabolic dish concentrator: An experimental study," Renewable Energy, Elsevier, vol. 139(C), pages 573-581.
    8. Karimi, Reza & Gheinani, Touraj Tavakoli & Madadi Avargani, Vahid, 2018. "A detailed mathematical model for thermal performance analysis of a cylindrical cavity receiver in a solar parabolic dish collector system," Renewable Energy, Elsevier, vol. 125(C), pages 768-782.
    9. Azzouzi, Djelloul & Boumeddane, Boussad & Abene, Abderahmane, 2017. "Experimental and analytical thermal analysis of cylindrical cavity receiver for solar dish," Renewable Energy, Elsevier, vol. 106(C), pages 111-121.
    10. Zou, Chongzhe & Zhang, Yanping & Falcoz, Quentin & Neveu, Pierre & Zhang, Cheng & Shu, Weicheng & Huang, Shuhong, 2017. "Design and optimization of a high-temperature cavity receiver for a solar energy cascade utilization system," Renewable Energy, Elsevier, vol. 103(C), pages 478-489.
    11. Jafrancesco, David & Cardoso, Joao P. & Mutuberria, Amaia & Leonardi, Erminia & Les, Iñigo & Sansoni, Paola & Francini, Franco & Fontani, Daniela, 2018. "Optical simulation of a central receiver system: Comparison of different software tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 792-803.
    12. Kasaeian, Alibakhsh & Kouravand, Amir & Vaziri Rad, Mohammad Amin & Maniee, Siavash & Pourfayaz, Fathollah, 2021. "Cavity receivers in solar dish collectors: A geometric overview," Renewable Energy, Elsevier, vol. 169(C), pages 53-79.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajan, Abhinav & Reddy, K.S., 2023. "Integrated optical and thermal model to investigate the performance of a solar parabolic dish collector coupled with a cavity receiver," Renewable Energy, Elsevier, vol. 219(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan, Atazaz & Quanfang, Chen & Abbas, Sajid & Lu, Wu & Youming, Luo, 2021. "An experimental investigation on thermal and optical analysis of cylindrical and conical cavity copper tube receivers design for solar dish concentrator," Renewable Energy, Elsevier, vol. 179(C), pages 1849-1864.
    2. Kasaeian, Alibakhsh & Kouravand, Amir & Vaziri Rad, Mohammad Amin & Maniee, Siavash & Pourfayaz, Fathollah, 2021. "Cavity receivers in solar dish collectors: A geometric overview," Renewable Energy, Elsevier, vol. 169(C), pages 53-79.
    3. Chen, Yuxuan & Wang, Ding & Zou, Chongzhe & Gao, Wei & Zhang, Yanping, 2022. "Thermal performance and thermal stress analysis of a supercritical CO2 solar conical receiver under different flow directions," Energy, Elsevier, vol. 246(C).
    4. Soltani, Sara & Bonyadi, Mohammad & Madadi Avargani, Vahid, 2019. "A novel optical-thermal modeling of a parabolic dish collector with a helically baffled cylindrical cavity receiver," Energy, Elsevier, vol. 168(C), pages 88-98.
    5. Yanping, Zhang & Yuxuan, Chen & Chongzhe, Zou & Hu, Xiao & Falcoz, Quentin & Neveu, Pierre & Cheng, Zhang & Xiaohong, Huang, 2021. "Experimental investigation on heat-transfer characteristics of a cylindrical cavity receiver with pressurized air in helical pipe," Renewable Energy, Elsevier, vol. 163(C), pages 320-330.
    6. Zhang, Yanping & Xiao, Hu & Zou, Chongzhe & Falcoz, Quentin & Neveu, Pierre, 2020. "Combined optics and heat transfer numerical model of a solar conical receiver with built-in helical pipe," Energy, Elsevier, vol. 193(C).
    7. Danish, Syed Noman & Al-Ansary, Hany & El-Leathy, Abdelrahman & Ba-Abbad, Mazen & Khan, Salah Ud-Din & Rizvi, Arslan & Orfi, Jamel & Al-Nakhli, Ahmed, 2022. "Experimental and techno-economic analysis of two innovative solar thermal receiver designs for a point focus solar Fresnel collector," Energy, Elsevier, vol. 261(PA).
    8. Zhang, Li & Fang, Jiabin & Wei, Jinjia & Yang, Guidong, 2017. "Numerical investigation on the thermal performance of molten salt cavity receivers with different structures," Applied Energy, Elsevier, vol. 204(C), pages 966-978.
    9. Rajan, Abhinav & Reddy, K.S., 2023. "Integrated optical and thermal model to investigate the performance of a solar parabolic dish collector coupled with a cavity receiver," Renewable Energy, Elsevier, vol. 219(P1).
    10. Chen, Jinli & Xiao, Gang & Xu, Haoran & Zhou, Xin & Yang, Jiamin & Ni, Mingjiang & Cen, Kefa, 2022. "Experiment and dynamic simulation of a solar tower collector system for power generation," Renewable Energy, Elsevier, vol. 196(C), pages 946-958.
    11. Vengadesan, Elumalai & Gurusamy, Pathinettampadian & Senthil, Ramalingam, 2023. "Thermal performance analysis of flat surface solar receiver with square tubular fins for a parabolic dish collector," Renewable Energy, Elsevier, vol. 216(C).
    12. Georgios E. Arnaoutakis & Dimitris Al. Katsaprakakis, 2021. "Concentrating Solar Power Advances in Geometric Optics, Materials and System Integration," Energies, MDPI, vol. 14(19), pages 1-25, September.
    13. Amir Hossein Arkian & Gholamhassan Najafi & Shiva Gorjian & Reyhaneh Loni & Evangelos Bellos & Talal Yusaf, 2019. "Performance Assessment of a Solar Dryer System Using Small Parabolic Dish and Alumina/Oil Nanofluid: Simulation and Experimental Study," Energies, MDPI, vol. 12(24), pages 1-22, December.
    14. Zayed, Mohamed E. & Zhao, Jun & Li, Wenjia & Elsheikh, Ammar H. & Elaziz, Mohamed Abd, 2021. "A hybrid adaptive neuro-fuzzy inference system integrated with equilibrium optimizer algorithm for predicting the energetic performance of solar dish collector," Energy, Elsevier, vol. 235(C).
    15. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    16. Wang, Wujun & Fan, Liwu & Laumert, Björn, 2021. "A theoretical heat transfer analysis of different indirectly-irradiated receiver designs for high-temperature concentrating solar power applications," Renewable Energy, Elsevier, vol. 163(C), pages 1983-1993.
    17. Li, Xue & Sun, Yanyi & Liu, Xiao & Ming, Yang & Wu, Yupeng, 2024. "Development of a comprehensive method to estimate the optical, thermal and electrical performance of a complex PV window for building integration," Energy, Elsevier, vol. 294(C).
    18. El-Samie, Mostafa M. Abd & Ju, Xing & Zhang, Zheyang & Adam, Saadelnour Abdueljabbar & Pan, Xinyu & Xu, Chao, 2020. "Three-dimensional numerical investigation of a hybrid low concentrated photovoltaic/thermal system," Energy, Elsevier, vol. 190(C).
    19. Pratik, Nahyan Ahnaf & Ali, Md. Hasan & Lubaba, Nafisa & Hasan, Nahid & Asaduzzaman, Md. & Miyara, Akio, 2024. "Numerical investigation to optimize the modified cavity receiver for enhancement of thermal performance of solar parabolic dish collector system," Energy, Elsevier, vol. 290(C).
    20. Loni, R. & Kasaeian, A.B. & Askari Asli-Ardeh, E. & Ghobadian, B. & Gorjian, Sh, 2018. "Experimental and numerical study on dish concentrator with cubical and cylindrical cavity receivers using thermal oil," Energy, Elsevier, vol. 154(C), pages 168-181.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:185:y:2022:i:c:p:804-819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.