Numerical investigation to optimize the modified cavity receiver for enhancement of thermal performance of solar parabolic dish collector system
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.130133
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Thirunavukkarasu, V. & Cheralathan, M., 2020. "An experimental study on energy and exergy performance of a spiral tube receiver for solar parabolic dish concentrator," Energy, Elsevier, vol. 192(C).
- Loni, R. & Askari Asli-ardeh, E. & Ghobadian, B. & Kasaeian, A.B. & Gorjian, Sh., 2017. "Thermodynamic analysis of a solar dish receiver using different nanofluids," Energy, Elsevier, vol. 133(C), pages 749-760.
- Loni, Reyhaneh & Asli-Ardeh, E. Askari & Ghobadian, B. & Kasaeian, A.B. & Bellos, Evangelos, 2018. "Energy and exergy investigation of alumina/oil and silica/oil nanofluids in hemispherical cavity receiver: Experimental Study," Energy, Elsevier, vol. 164(C), pages 275-287.
- Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K. & Ahmad, Abdalqader, 2017. "Numerical investigation of pitch value on thermal performance of solar receiver for solar powered Brayton cycle application," Energy, Elsevier, vol. 119(C), pages 523-539.
- Wang, Qiliang & Hu, Mingke & Yang, Honglun & Cao, Jingyu & Li, Jing & Su, Yuehong & Pei, Gang, 2019. "Energetic and exergetic analyses on structural optimized parabolic trough solar receivers in a concentrated solar–thermal collector system," Energy, Elsevier, vol. 171(C), pages 611-623.
- Reddy, K.S. & Natarajan, Sendhil Kumar & Veershetty, G., 2015. "Experimental performance investigation of modified cavity receiver with fuzzy focal solar dish concentrator," Renewable Energy, Elsevier, vol. 74(C), pages 148-157.
- Wang, Mo & Siddiqui, Kamran, 2010. "The impact of geometrical parameters on the thermal performance of a solar receiver of dish-type concentrated solar energy system," Renewable Energy, Elsevier, vol. 35(11), pages 2501-2513.
- Chu, Shunzhou & Bai, Fengwu & Zhang, Xiliang & Yang, Bei & Cui, Zhiying & Nie, Fuliang, 2018. "Experimental study and thermal analysis of a tubular pressurized air receiver," Renewable Energy, Elsevier, vol. 125(C), pages 413-424.
- Soltani, Sara & Bonyadi, Mohammad & Madadi Avargani, Vahid, 2019. "A novel optical-thermal modeling of a parabolic dish collector with a helically baffled cylindrical cavity receiver," Energy, Elsevier, vol. 168(C), pages 88-98.
- Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K., 2016. "The effect of receiver geometry on the optical performance of a small-scale solar cavity receiver for parabolic dish applications," Energy, Elsevier, vol. 114(C), pages 513-525.
- Awasthi, Kuldeep & Khan, Mohd Kaleem, 2019. "Performance evaluation of coiled tube receiver cavity for a concentrating collector," Renewable Energy, Elsevier, vol. 138(C), pages 666-674.
- Ahmad, Lujean & Khordehgah, Navid & Malinauskaite, Jurgita & Jouhara, Hussam, 2020. "Recent advances and applications of solar photovoltaics and thermal technologies," Energy, Elsevier, vol. 207(C).
- Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
- Loni, R. & Kasaeian, A.B. & Askari Asli-Ardeh, E. & Ghobadian, B., 2016. "Optimizing the efficiency of a solar receiver with tubular cylindrical cavity for a solar-powered organic Rankine cycle," Energy, Elsevier, vol. 112(C), pages 1259-1272.
- Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kasaeian, Alibakhsh & Kouravand, Amir & Vaziri Rad, Mohammad Amin & Maniee, Siavash & Pourfayaz, Fathollah, 2021. "Cavity receivers in solar dish collectors: A geometric overview," Renewable Energy, Elsevier, vol. 169(C), pages 53-79.
- Hassan, Atazaz & Quanfang, Chen & Abbas, Sajid & Lu, Wu & Youming, Luo, 2021. "An experimental investigation on thermal and optical analysis of cylindrical and conical cavity copper tube receivers design for solar dish concentrator," Renewable Energy, Elsevier, vol. 179(C), pages 1849-1864.
- Soltani, Sara & Bonyadi, Mohammad & Madadi Avargani, Vahid, 2019. "A novel optical-thermal modeling of a parabolic dish collector with a helically baffled cylindrical cavity receiver," Energy, Elsevier, vol. 168(C), pages 88-98.
- Loni, R. & Askari Asli-Ardeh, E. & Ghobadian, B. & Kasaeian, A.B. & Bellos, Evangelos, 2018. "Thermal performance comparison between Al2O3/oil and SiO2/oil nanofluids in cylindrical cavity receiver based on experimental study," Renewable Energy, Elsevier, vol. 129(PA), pages 652-665.
- Yanping, Zhang & Yuxuan, Chen & Chongzhe, Zou & Hu, Xiao & Falcoz, Quentin & Neveu, Pierre & Cheng, Zhang & Xiaohong, Huang, 2021. "Experimental investigation on heat-transfer characteristics of a cylindrical cavity receiver with pressurized air in helical pipe," Renewable Energy, Elsevier, vol. 163(C), pages 320-330.
- Vengadesan, Elumalai & Gurusamy, Pathinettampadian & Senthil, Ramalingam, 2023. "Thermal performance analysis of flat surface solar receiver with square tubular fins for a parabolic dish collector," Renewable Energy, Elsevier, vol. 216(C).
- Loni, R. & Kasaeian, A.B. & Askari Asli-Ardeh, E. & Ghobadian, B. & Gorjian, Sh, 2018. "Experimental and numerical study on dish concentrator with cubical and cylindrical cavity receivers using thermal oil," Energy, Elsevier, vol. 154(C), pages 168-181.
- Loni, Reyhaneh & Asli-Ardeh, E. Askari & Ghobadian, B. & Kasaeian, A.B. & Bellos, Evangelos, 2018. "Energy and exergy investigation of alumina/oil and silica/oil nanofluids in hemispherical cavity receiver: Experimental Study," Energy, Elsevier, vol. 164(C), pages 275-287.
- Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
- Ghodbane, Mokhtar & Said, Zafar & Hachicha, Ahmed Amine & Boumeddane, Boussad, 2020. "Performance assessment of linear Fresnel solar reflector using MWCNTs/DW nanofluids," Renewable Energy, Elsevier, vol. 151(C), pages 43-56.
- Thirunavukkarasu, V. & Cheralathan, M., 2020. "An experimental study on energy and exergy performance of a spiral tube receiver for solar parabolic dish concentrator," Energy, Elsevier, vol. 192(C).
- Li, Xueling & Li, Renfu & Chang, Huawei & Zeng, Lijian & Xi, Zhaojun & Li, Yichao, 2022. "Numerical simulation of a cavity receiver enhanced with transparent aerogel for parabolic dish solar power generation," Energy, Elsevier, vol. 246(C).
- Mirzaei, Mohammad Reza & Kasaeian, Alibakhsh & Sadeghi Motlagh, Maryam & Fereidoni, Sahar, 2024. "Thermo-economic analysis of an integrated combined heating, cooling, and power unit with dish collector and organic Rankine cycle," Energy, Elsevier, vol. 296(C).
- Alamdari, Pedram & Khatamifar, Mehdi & Lin, Wenxian, 2024. "Heat loss analysis review: Parabolic trough and linear Fresnel collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
- Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K. & Ahmad, Abdalqader, 2017. "Numerical investigation of pitch value on thermal performance of solar receiver for solar powered Brayton cycle application," Energy, Elsevier, vol. 119(C), pages 523-539.
- Guobin Cao & Hua Qin & Rajan Ramachandran & Bo Liu, 2019. "Solar Concentrator Consisting of Multiple Aspheric Reflectors," Energies, MDPI, vol. 12(21), pages 1-14, October.
- Zhang, Yanping & Xiao, Hu & Zou, Chongzhe & Falcoz, Quentin & Neveu, Pierre, 2020. "Combined optics and heat transfer numerical model of a solar conical receiver with built-in helical pipe," Energy, Elsevier, vol. 193(C).
- Rajan, Abhinav & Reddy, K.S., 2023. "Integrated optical and thermal model to investigate the performance of a solar parabolic dish collector coupled with a cavity receiver," Renewable Energy, Elsevier, vol. 219(P1).
- Garrido, Jorge & Aichmayer, Lukas & Abou-Taouk, Abdallah & Laumert, Björn, 2019. "Experimental and numerical performance analyses of Dish-Stirling cavity receivers: Radiative property study and design," Energy, Elsevier, vol. 169(C), pages 478-488.
- Aichmayer, Lukas & Garrido, Jorge & Wang, Wujun & Laumert, Björn, 2018. "Experimental evaluation of a novel solar receiver for a micro gas-turbine based solar dish system in the KTH high-flux solar simulator," Energy, Elsevier, vol. 159(C), pages 184-195.
More about this item
Keywords
Parabolic dish collector; Solar-ray tracing; Optical performance; Thermal performance; Cavity receiver;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035272. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.