IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v185y2022icp1167-1176.html
   My bibliography  Save this article

Optimisation of high-performance, cobalt-free SrFe1-xMoxO3-δ cathodes for solid oxide fuel cells prepared by spray pyrolysis

Author

Listed:
  • Zapata-Ramírez, Víctor
  • Rosendo-Santos, Paula
  • Amador, Ulises
  • Ritter, Clemens
  • Mather, Glenn C.
  • Pérez-Coll, Domingo

Abstract

Strontium-ferrite-based perovskites as cobalt-free cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs) have been analysed employing structural, stability and electrochemical studies. Neutron diffraction of SrFeO3-δ and SrFe0.9Mo0.1O3-δ prepared by a Pechini method confirmed that SrFeO3-δ undergoes a phase transition from tetragonal to cubic symmetry at 300–400 °C, whereas Mo-doping stabilises cubic symmetry in the range RT-900 °C. Spray-pyrolysed electrodes offered significantly lower area-specific resistances of 0.2 and 0.11 Ω cm2 for SrFeO3-δ and SrFe0.9Mo0.1O3-δ at 700 °C, respectively, in comparison to their analogues synthesised by the Pechini method (0.55 and 0.42 Ω cm2), and lower grain size, as confirmed by scanning electron microscopy. Thermal cycling and ageing studies indicated a more robust response for the spray-pyrolysed electrodes, in particular the Mo-doped phase, which achieved a stable electrode-polarisation resistance <0.1 Ω cm2 for 10 heating/cooling cycles and 100 h of ageing at 700 °C. Anode-supported single cells with a thin Ce0.9Gd0.1O2-δ electrolyte produced performances of 0.5 and 0.9 W cm−2 at 700 and 800 °C, respectively. SrFe0.9Mo0.1O3-δ deposited by spray pyrolysis is, thus, proposed as a promising cobalt-free cathode for IT-SOFC based on its good structural stability and highly competitive electrochemical performance.

Suggested Citation

  • Zapata-Ramírez, Víctor & Rosendo-Santos, Paula & Amador, Ulises & Ritter, Clemens & Mather, Glenn C. & Pérez-Coll, Domingo, 2022. "Optimisation of high-performance, cobalt-free SrFe1-xMoxO3-δ cathodes for solid oxide fuel cells prepared by spray pyrolysis," Renewable Energy, Elsevier, vol. 185(C), pages 1167-1176.
  • Handle: RePEc:eee:renene:v:185:y:2022:i:c:p:1167-1176
    DOI: 10.1016/j.renene.2021.12.121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121018486
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.12.121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Yiran & Gao, Xiangyun & An, Haizhong & Xi, Xian & Sun, Qingru & Jiang, Meihui, 2020. "The effect of the mined cobalt trade dependence Network's structure on trade price," Resources Policy, Elsevier, vol. 65(C).
    2. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    3. Cascos, V. & Fernández-Díaz, M.T. & Alonso, J.A., 2019. "Structural and electrical characterization of the novel SrCo1-xTixO3–δ (x = 0.05, 0.1 and 0.15) perovskites: Evaluation as cathode materials in solid oxide fuel cells," Renewable Energy, Elsevier, vol. 133(C), pages 205-215.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farnak, M. & Esfahani, J.A. & Bozorgmehri, S., 2020. "An experimental design of the solid oxide fuel cell performance by using partially oxidation reforming of natural gas," Renewable Energy, Elsevier, vol. 147(P1), pages 155-163.
    2. Lv, Xiuqing & Chen, Huili & Zhou, Wei & Li, Si-Dian & Cheng, Fangqin & Shao, Zongping, 2022. "SrCo0.4Fe0.4Zr0.1Y0.1O3-δ, A new CO2 tolerant cathode for proton-conducting solid oxide fuel cells," Renewable Energy, Elsevier, vol. 185(C), pages 8-16.
    3. Li, Yingli & Huang, Jianbai & Zhang, Hongwei, 2022. "The impact of country risks on cobalt trade patterns from the perspective of the industrial chain," Resources Policy, Elsevier, vol. 77(C).
    4. Lubov S. Skutina & Aleksey A. Vylkov & Dmitry K. Kuznetsov & Dmitry A. Medvedev & Vladimir Ya. Shur, 2019. "Tailoring Ni and Sr 2 Mg 0.25 Ni 0.75 MoO 6−δ Cermet Compositions for Designing the Fuel Electrodes of Solid Oxide Electrochemical Cells," Energies, MDPI, vol. 12(12), pages 1-11, June.
    5. Li, Jiaxin & Peng, Jiachao & Shuai, Chuanmin & Wang, Zihan & Huang, Fubin & Khayyam, Muhammad, 2022. "Does the solar PV program enhance the social empowerment of China's rural poor?," Energy, Elsevier, vol. 253(C).
    6. Yu, Yu & Ma, Daipeng & Zhu, Weiwei, 2023. "Resilience assessment of international cobalt trade network," Resources Policy, Elsevier, vol. 83(C).
    7. Liu, Meng & Li, Huajiao & Zhou, Jinsheng & Feng, Sida & Wang, Yanli & Wang, Xingxing, 2022. "Analysis of material flow among multiple phases of cobalt industrial chain based on a complex network," Resources Policy, Elsevier, vol. 77(C).
    8. Di, Jinghan & Wen, Zongguo & Jiang, Meihui & Miatto, Alessio, 2022. "Patterns and features of embodied environmental flow networks in the international trade of metal resources: A study of aluminum," Resources Policy, Elsevier, vol. 77(C).
    9. Cheng, Tianliang & Jiang, Jianhua & Wu, Xiaodong & Li, Xi & Xu, Mengxue & Deng, Zhonghua & Li, Jian, 2019. "Application oriented multiple-objective optimization, analysis and comparison of solid oxide fuel cell systems with different configurations," Applied Energy, Elsevier, vol. 235(C), pages 914-929.
    10. Liu, Wei & Li, Xin & Liu, Chunyan & Wang, Minxi & Liu, Litao, 2023. "Resilience assessment of the cobalt supply chain in China under the impact of electric vehicles and geopolitical supply risks," Resources Policy, Elsevier, vol. 80(C).
    11. El-Hay, E.A. & El-Hameed, M.A. & El-Fergany, A.A., 2019. "Optimized Parameters of SOFC for steady state and transient simulations using interior search algorithm," Energy, Elsevier, vol. 166(C), pages 451-461.
    12. Eichhorn Colombo, Konrad W. & Kharton, Vladislav V. & Berto, Filippo & Paltrinieri, Nicola, 2020. "Mathematical modeling and simulation of hydrogen-fueled solid oxide fuel cell system for micro-grid applications - Effect of failure and degradation on transient performance," Energy, Elsevier, vol. 202(C).
    13. Dong, Xiaojuan & An, Feng & Dong, Zhiliang & Wang, Ze & Jiang, Meihui & Yang, Ping & An, Haigang, 2021. "Optimization of the international nickel ore trade network," Resources Policy, Elsevier, vol. 70(C).
    14. Gainey, Brian & Lawler, Benjamin, 2021. "A fuel cell free piston gas turbine hybrid architecture for high-efficiency, load-flexible power generation," Applied Energy, Elsevier, vol. 283(C).
    15. Alena Vagaská & Miroslav Gombár & Ľuboslav Straka, 2022. "Selected Mathematical Optimization Methods for Solving Problems of Engineering Practice," Energies, MDPI, vol. 15(6), pages 1-22, March.
    16. Zheng, Shuxian & Zhou, Xuanru & Zhao, Pei & Xing, Wanli & Han, Yawen & Hao, Hongchang & Luo, Wenbo, 2022. "Impact of countries’ role on trade prices from a nickel chain perspective: Based on complex network and panel regression analysis," Resources Policy, Elsevier, vol. 78(C).
    17. Wang, Shicheng & Liu, Xin & Gu, Xueying & Huang, Xinyu & Li, Yu, 2023. "Analysis and multi-objective optimization of integrating a syngas-fed solid oxide fuel cell improved by a two-stage expander-organic flash cycle using an ejector and a desalination cycle," Energy, Elsevier, vol. 272(C).
    18. Tang, Qianyong & Li, Huajiao & Qi, Yajie & Li, Yang & Liu, Haiping & Wang, Xingxing, 2023. "The reliability of the trade dependence network in the tungsten industry chain based on percolation," Resources Policy, Elsevier, vol. 82(C).
    19. Shi, Qing & Sun, Xiaoqi & Xu, Man & Wang, Mengjiao, 2022. "The multiplex network structure of global cobalt industry chain," Resources Policy, Elsevier, vol. 76(C).
    20. Mu, Dong & Ren, Huanyu & Wang, Chao & Yue, Xiongping & Du, Jianbang & Ghadimi, Pezhman, 2023. "Structural characteristics and disruption ripple effect in a meso-level electric vehicle Lithium-ion battery supply chain network," Resources Policy, Elsevier, vol. 80(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:185:y:2022:i:c:p:1167-1176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.