IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v175y2021icp880-886.html
   My bibliography  Save this article

Effects of unsaturated fatty acid methyl esters on the oxidation stability of biodiesel determined by gas chromatography-mass spectrometry and information entropy methods

Author

Listed:
  • Wang, Wenchao
  • Liu, Huili
  • Li, Fashe
  • Wang, Hua
  • Ma, Xin
  • Li, Jingjing
  • Zhou, Li
  • Xiao, Quan

Abstract

To explore the trend of fatty acid methyl esters (FAMEs) during the oxidation process of biodiesel, this study uses gas chromatography - mass spectrometry (GC-MS) combined with information entropy theory to propose a new method to analyze the effect of FAMEs on the stability of biodiesel (especially with different amounts of unsaturated FAMEs). The induction periods of the main FAMEs in biodiesel were determined by the Rancimat method. The results showed that the longest induction period of methyl stearate was 248 h, while the induction of methyl linoleate was only 0.12 h. Accelerated oxidation of biodiesel, using GC-MS analysis showed that the oxidation trends of FAMEs was different. The oxidation rate of methyl linoleate was the fastest. A mathematical equation was proposed to calculate the trend of FAMEs. The results showed that during the 5 h accelerated an oxidation process, the content of methyl linoleate decreased from 28.35% to 2.10%, while the content of methyl oleate decreased by 18.21%. Using information entropy, the weighting coefficients of FAMEs in the oxidation process of biodiesel were calculated. The weighting coefficient of methyl linoleate was as high as 0.6797. Methyl linoleate was the main reason why biodiesel was easily oxidized.

Suggested Citation

  • Wang, Wenchao & Liu, Huili & Li, Fashe & Wang, Hua & Ma, Xin & Li, Jingjing & Zhou, Li & Xiao, Quan, 2021. "Effects of unsaturated fatty acid methyl esters on the oxidation stability of biodiesel determined by gas chromatography-mass spectrometry and information entropy methods," Renewable Energy, Elsevier, vol. 175(C), pages 880-886.
  • Handle: RePEc:eee:renene:v:175:y:2021:i:c:p:880-886
    DOI: 10.1016/j.renene.2021.04.132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121006522
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.04.132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atalay, Kumru Didem & Atalay, Buket & Isin, Feride Bahar, 2019. "FIPIA with information entropy: A new hybrid method to assess airline service quality," Journal of Air Transport Management, Elsevier, vol. 76(C), pages 67-77.
    2. Sui, Meng & Li, Fashe, 2019. "Effect of TEPA on oxidation stability and metal ion content of biodiesel," Renewable Energy, Elsevier, vol. 143(C), pages 352-358.
    3. Rizwanul Fattah, I.M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Masum, B.M. & Imtenan, S. & Ashraful, A.M., 2014. "Effect of antioxidants on oxidation stability of biodiesel derived from vegetable and animal based feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 356-370.
    4. Saluja, Rajesh Kumar & Kumar, Vineet & Sham, Radhey, 2016. "Stability of biodiesel – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 866-881.
    5. Yaakob, Zahira & Narayanan, Binitha N. & Padikkaparambil, Silija & Unni K., Surya & Akbar P., Mohammed, 2014. "A review on the oxidation stability of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 136-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongxing Deng & Wen Wen & Jie Zhou, 2023. "Competitiveness Evaluation of Express Delivery Enterprises Based on the Information Entropy and Gray Correlation Analysis," Sustainability, MDPI, vol. 15(16), pages 1-11, August.
    2. Ziyad, Ben Ahmed & Yousfi, Mohamed & Vander Heyden, Yvan, 2022. "Effects of growing region and maturity stages on oil yield, fatty acid profile and tocopherols of Pistacia atlantica Desf. fruit and their implications on resulting biodiesel," Renewable Energy, Elsevier, vol. 181(C), pages 167-181.
    3. Xue, Yan & Hu, Dongmei & Irfan, Muhammad & Wu, Haitao & Hao, Yu, 2023. "Natural resources policy making through finance? The role of green finance on energy resources poverty," Resources Policy, Elsevier, vol. 85(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.
    2. Roveda, Ana Carolina & Comin, Marina & Caires, Anderson Rodrigues Lima & Ferreira, Valdir Souza & Trindade, Magno Aparecido Gonçalves, 2016. "Thermal stability enhancement of biodiesel induced by a synergistic effect between conventional antioxidants and an alternative additive," Energy, Elsevier, vol. 109(C), pages 260-265.
    3. Jemima Romola, C.V. & Meganaharshini, M. & Rigby, S.P. & Ganesh Moorthy, I. & Shyam Kumar, R. & Karthikumar, Sankar, 2021. "A comprehensive review of the selection of natural and synthetic antioxidants to enhance the oxidative stability of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Rodrigues, Jailson Silva & do Valle, Camila Peixoto & Uchoa, Antonia Flávia Justino & Ramos, Denise Moreira & da Ponte, Flávio Albuquerque Ferreira & Rios, Maria Alexsandra de Sousa & de Queiroz Malve, 2020. "Comparative study of synthetic and natural antioxidants on the oxidative stability of biodiesel from Tilapia oil," Renewable Energy, Elsevier, vol. 156(C), pages 1100-1106.
    5. Varatharajan, K. & Pushparani, D.S., 2018. "Screening of antioxidant additives for biodiesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2017-2028.
    6. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    7. Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Sulaiman, Alawi & Goli, Sayed Amir Hossein & Tavassoli-Kafrani, Elham & Ghaffari, Akram & Rajaeifar, Mohammad Ali & Kim, Ki-Hyun, 2020. "Unlocking the potential of walnut husk extract in the production of waste cooking oil-based biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Seffati, Kambiz & Esmaeili, Hossein & Honarvar, Bizhan & Esfandiari, Nadia, 2020. "AC/CuFe2O4@CaO as a novel nanocatalyst to produce biodiesel from chicken fat," Renewable Energy, Elsevier, vol. 147(P1), pages 25-34.
    9. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    10. Gniewko Niedbała, 2019. "Application of Artificial Neural Networks for Multi-Criteria Yield Prediction of Winter Rapeseed," Sustainability, MDPI, vol. 11(2), pages 1-13, January.
    11. Khadijah Nabilah Mohd Zahri & Azham Zulkharnain & Suriana Sabri & Claudio Gomez-Fuentes & Siti Aqlima Ahmad, 2021. "Research Trends of Biodegradation of Cooking Oil in Antarctica from 2001 to 2021: A Bibliometric Analysis Based on the Scopus Database," IJERPH, MDPI, vol. 18(4), pages 1-15, February.
    12. Samanci, Simge & Didem Atalay, Kumru & Bahar Isin, Feride, 2021. "Focusing on the big picture while observing the concerns of both managers and passengers in the post-covid era," Journal of Air Transport Management, Elsevier, vol. 90(C).
    13. Li, Ruizhi & Wang, Shuang & Zhang, Huicong & Li, Fashe & Sui, Meng, 2022. "Synthesis, antioxidant properties, and oil solubility of a novel ionic liquid [UIM0Y2][C6H2(OH)3COO] in biodiesel," Renewable Energy, Elsevier, vol. 197(C), pages 545-551.
    14. Yaakob, Zahira & Narayanan, Binitha N. & Padikkaparambil, Silija & Unni K., Surya & Akbar P., Mohammed, 2014. "A review on the oxidation stability of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 136-153.
    15. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Kazim Sari & Abdullah Alper Sener, 2022. "Service quality and intention to recommend in low-cost and full-service airlines in Turkey," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 49(3), pages 297-309, September.
    17. Sergio Nogales-Delgado & José María Encinar & Juan Félix González, 2019. "Safflower Biodiesel: Improvement of its Oxidative Stability by Using BHA and TBHQ," Energies, MDPI, vol. 12(10), pages 1-13, May.
    18. Patricia Lippitt & Nadine Itani & John F. O’Connell & David Warnock-Smith & Marina Efthymiou, 2023. "Investigating Airline Service Quality from a Business Traveller Perspective through the Integration of the Kano Model and Importance–Satisfaction Analysis," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    19. Fayaz Hussain & Manzoore Elahi M. Soudagar & Asif Afzal & M.A. Mujtaba & I.M. Rizwanul Fattah & Bharat Naik & Mohammed Huzaifa Mulla & Irfan Anjum Badruddin & T. M. Yunus Khan & Vallapudi Dhana Raju &, 2020. "Enhancement in Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Ce-ZnO Nanoparticle Additive Added to Soybean Biodiesel Blends," Energies, MDPI, vol. 13(17), pages 1-20, September.
    20. Sundus, F. & Fazal, M.A. & Masjuki, H.H., 2017. "Tribology with biodiesel: A study on enhancing biodiesel stability and its fuel properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 399-412.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:175:y:2021:i:c:p:880-886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.