IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v173y2021icp188-196.html
   My bibliography  Save this article

Technology valuation of cellulosic ethanol production by Kluyveromyces marxianus CCT 7735 from sweet sorghum bagasse at elevated temperatures

Author

Listed:
  • Tinôco, Daniel
  • Genier, Hugo Leonardo André
  • da Silveira, Wendel Batista

Abstract

Technology valuation of cellulosic ethanol production by Kluyveromyces marxianus CCT 7735 based on the concepts of circular economy was investigated. After an acid-base pretreatment followed by saccharification at 50 °C for 72 h, the sweet sorghum hydrolysate was used to produce ethanol at three temperatures: 37, 42, and 45 °C. About 17.83 g/L of cellulosic ethanol was reached at 42 °C in 24 h, with a yield of 2769.8 L/hasorghum, almost double that obtained for corn straw. This was the best cellulosic ethanol production from sweet sorghum bagasse achieved by K. marxianus strain and, therefore, it was used in the technology valuation. This analysis was carried out through the application of the profit equation, in which the revenue corresponded to ethanol sales in the global market in 2020, and the costs were defined by the activity-based costing method. An integration between 1G and 2G ethanol production, without mixing material streams, was considered to improve the technology valuation analysis. As a result, the equivalent to 17.2% of the profit obtained with the sugarcane juice ethanol was achieved for the sweet sorghum bagasse. Therefore, the technology valuation indicated the potential of sweet sorghum bagasse in the biorefinery ethanol production.

Suggested Citation

  • Tinôco, Daniel & Genier, Hugo Leonardo André & da Silveira, Wendel Batista, 2021. "Technology valuation of cellulosic ethanol production by Kluyveromyces marxianus CCT 7735 from sweet sorghum bagasse at elevated temperatures," Renewable Energy, Elsevier, vol. 173(C), pages 188-196.
  • Handle: RePEc:eee:renene:v:173:y:2021:i:c:p:188-196
    DOI: 10.1016/j.renene.2021.03.132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121004961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.03.132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arora, Richa & Behera, Shuvashish & Sharma, Nilesh Kumar & Kumar, Sachin, 2017. "Augmentation of ethanol production through statistically designed growth and fermentation medium using novel thermotolerant yeast isolates," Renewable Energy, Elsevier, vol. 109(C), pages 406-421.
    2. Tavares, Bruna & Felipe, Maria das Graças de Almeida & dos Santos, Júlio César & Pereira, Félix Monteiro & Gomes, Simone Damasceno & Sene, Luciane, 2019. "An experimental and modeling approach for ethanol production by Kluyveromyces marxianus in stirred tank bioreactor using vacuum extraction as a strategy to overcome product inhibition," Renewable Energy, Elsevier, vol. 131(C), pages 261-267.
    3. Menghui Yu & Jihong Li & Sandra Chang & Ran Du & Shizhong Li & Lei Zhang & Guifang Fan & Zhipei Yan & Ting Cui & Guangtao Cong & Gang Zhao, 2014. "Optimization of Ethanol Production from NaOH-Pretreated Solid State Fermented Sweet Sorghum Bagasse," Energies, MDPI, vol. 7(7), pages 1-14, June.
    4. Santos, Catarina I. & Silva, Constança C. & Mussatto, Solange I. & Osseweijer, Patricia & van der Wielen, Luuk A.M. & Posada, John A., 2018. "Integrated 1st and 2nd generation sugarcane bio-refinery for jet fuel production in Brazil: Techno-economic and greenhouse gas emissions assessment," Renewable Energy, Elsevier, vol. 129(PB), pages 733-747.
    5. Zhang, Changwei & Wen, Hao & Chen, Changjing & Cai, Di & Fu, Chaohui & Li, Ping & Qin, Peiyong & Tan, Tianwei, 2019. "Simultaneous saccharification and juice co-fermentation for high-titer ethanol production using sweet sorghum stalk," Renewable Energy, Elsevier, vol. 134(C), pages 44-53.
    6. Sunghae Jun & Sangsung Park & Dongsik Jang, 2015. "A Technology Valuation Model Using Quantitative Patent Analysis: A Case Study of Technology Transfer in Big Data Marketing," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 51(5), pages 963-974, September.
    7. Lin, Yu-Sheng & Lee, Wen-Chien & Duan, Kow-Jen & Lin, Yen-Han, 2013. "Ethanol production by simultaneous saccharification and fermentation in rotary drum reactor using thermotolerant Kluveromyces marxianus," Applied Energy, Elsevier, vol. 105(C), pages 389-394.
    8. Carpio, Lucio Guido Tapia & Simone de Souza, Fábio, 2017. "Optimal allocation of sugarcane bagasse for producing bioelectricity and second generation ethanol in Brazil: Scenarios of cost reductions," Renewable Energy, Elsevier, vol. 111(C), pages 771-780.
    9. Stamenković, Olivera S. & Siliveru, Kaliramesh & Veljković, Vlada B. & Banković-Ilić, Ivana B. & Tasić, Marija B. & Ciampitti, Ignacio A. & Đalović, Ivica G. & Mitrović, Petar M. & Sikora, Vladimir Š., 2020. "Production of biofuels from sorghum," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    10. Karagoz, Pınar & Bill, Roslyn M. & Ozkan, Melek, 2019. "Lignocellulosic ethanol production: Evaluation of new approaches, cell immobilization and reactor configurations," Renewable Energy, Elsevier, vol. 143(C), pages 741-752.
    11. Appiah-Nkansah, Nana Baah & Li, Jun & Rooney, William & Wang, Donghai, 2019. "A review of sweet sorghum as a viable renewable bioenergy crop and its techno-economic analysis," Renewable Energy, Elsevier, vol. 143(C), pages 1121-1132.
    12. Rohowsky, Bernd & Häßler, Thomas & Gladis, Arne & Remmele, Edgar & Schieder, Doris & Faulstich, Martin, 2013. "Feasibility of simultaneous saccharification and juice co-fermentation on hydrothermal pretreated sweet sorghum bagasse for ethanol production," Applied Energy, Elsevier, vol. 102(C), pages 211-219.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharma, Sumit & Swain, Manas R. & Mishra, Abhishek & Mathur, Anshu S. & Gupta, Ravi P. & Puri, Suresh K. & Ramakumar, S.S.V. & Sharma, Ajay K., 2021. "High solid loading and multiple-fed simultaneous saccharification and co-fermentation (mf-SSCF) of rice straw for high titer ethanol production at low cost," Renewable Energy, Elsevier, vol. 179(C), pages 1915-1924.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben Atitallah, Imen & Ntaikou, Ioanna & Antonopoulou, Georgia & Alexandropoulou, Maria & Brysch-Herzberg, Michael & Nasri, Moncef & Lyberatos, Gerasimos & Mechichi, Tahar, 2020. "Evaluation of the non-conventional yeast strain Wickerhamomyces anomalus (Pichia anomala) X19 for enhanced bioethanol production using date palm sap as renewable feedstock," Renewable Energy, Elsevier, vol. 154(C), pages 71-81.
    2. Romaní, Aloia & Ruiz, Héctor A. & Teixeira, José A. & Domingues, Lucília, 2016. "Valorization of Eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: An integrated and intensified approach," Renewable Energy, Elsevier, vol. 95(C), pages 1-9.
    3. Stamenković, Olivera S. & Siliveru, Kaliramesh & Veljković, Vlada B. & Banković-Ilić, Ivana B. & Tasić, Marija B. & Ciampitti, Ignacio A. & Đalović, Ivica G. & Mitrović, Petar M. & Sikora, Vladimir Š., 2020. "Production of biofuels from sorghum," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    4. Dehghanzad, Mahsa & Shafiei, Marzieh & Karimi, Keikhosro, 2020. "Whole sweet sorghum plant as a promising feedstock for biobutanol production via biorefinery approaches: Techno-economic analysis," Renewable Energy, Elsevier, vol. 158(C), pages 332-342.
    5. Zhang, Weiwei & Zhang, Xiankun & Lei, Fuhou & Jiang, Jianxin, 2020. "Co-production bioethanol and xylooligosaccharides from sugarcane bagasse via autohydrolysis pretreatment," Renewable Energy, Elsevier, vol. 162(C), pages 2297-2305.
    6. Melendez, Jesus R. & Mátyás, Bence & Hena, Sufia & Lowy, Daniel A. & El Salous, Ahmed, 2022. "Perspectives in the production of bioethanol: A review of sustainable methods, technologies, and bioprocesses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    7. Cannella, David & Sveding, Per Viktor & Jørgensen, Henning, 2014. "PEI detoxification of pretreated spruce for high solids ethanol fermentation," Applied Energy, Elsevier, vol. 132(C), pages 394-403.
    8. Souza, Simone Pereira & Nogueira, Luiz Augusto Horta & Martinez, Johan & Cortez, Luis Augusto Barbosa, 2018. "Sugarcane can afford a cleaner energy profile in Latin America & Caribbean," Renewable Energy, Elsevier, vol. 121(C), pages 164-172.
    9. Nicodème, Thibault & Berchem, Thomas & Jacquet, Nicolas & Richel, Aurore, 2018. "Thermochemical conversion of sugar industry by-products to biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 151-159.
    10. Donoso, David & Bolonio, David & Ballesteros, Rosario & Lapuerta, Magín & Canoira, Laureano, 2022. "Hydrogenated orange oil: A waste derived drop-in biojet fuel," Renewable Energy, Elsevier, vol. 188(C), pages 1049-1058.
    11. Hu, Yulin & Gong, Mengyue & Xing, Xuelian & Wang, Haoyu & Zeng, Yimin & Xu, Chunbao Charles, 2020. "Supercritical water gasification of biomass model compounds: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    12. Hongshen Li & Hongrui Liu & Yufang Li & Jilin Nan & Chen Shi & Shizhong Li, 2021. "Combined Vapor Permeation and Continuous Solid-State Distillation for Energy-Efficient Bioethanol Production," Energies, MDPI, vol. 14(8), pages 1-15, April.
    13. Zhang, Changwei & Wen, Hao & Chen, Changjing & Cai, Di & Fu, Chaohui & Li, Ping & Qin, Peiyong & Tan, Tianwei, 2019. "Simultaneous saccharification and juice co-fermentation for high-titer ethanol production using sweet sorghum stalk," Renewable Energy, Elsevier, vol. 134(C), pages 44-53.
    14. Chohan, Naseeha A. & Aruwajoye, G.S. & Sewsynker-Sukai, Y. & Gueguim Kana, E.B., 2020. "Valorisation of potato peel wastes for bioethanol production using simultaneous saccharification and fermentation: Process optimization and kinetic assessment," Renewable Energy, Elsevier, vol. 146(C), pages 1031-1040.
    15. Andrade, Dana I. & Specchia, Stefania & Fuziki, Maria E.K. & Oliveira, Jessica R.P. & Tusset, Angelo M. & Lenzi, Giane G., 2024. "Dynamic analysis and SDRE control applied in a mutating autocatalyst with chaotic behavior," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    16. Vandenberghe, L.P.S. & Valladares-Diestra, K.K. & Bittencourt, G.A. & Zevallos Torres, L.A. & Vieira, S. & Karp, S.G. & Sydney, E.B. & de Carvalho, J.C. & Thomaz Soccol, V. & Soccol, C.R., 2022. "Beyond sugar and ethanol: The future of sugarcane biorefineries in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    17. Zhang, Changwei & Chen, Huidong & Pang, Siyu & Su, Changsheng & Lv, Meng & An, Na & Wang, Kua & Cai, Di & Qin, Peiyong, 2020. "Importance of redefinition of corn stover harvest time to enhancing non-food bio-ethanol production," Renewable Energy, Elsevier, vol. 146(C), pages 1444-1450.
    18. Lyrio de Oliveira, Lucas & García Kerdan, Iván & de Oliveira Ribeiro, Celma & Oller do Nascimento, Claudio Augusto & Rego, Erik Eduardo & Giarola, Sara & Hawkes, Adam, 2020. "Modelling the technical potential of bioelectricity production under land use constraints: A multi-region Brazil case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    19. Hu, Ying & Hu, Mei & Jiang, Haiwei & Yu, Pengxin & Yang, Weiran, 2023. "Co-liquefaction of livestock manure and food waste: Synergistic effects and product combustion performance," Applied Energy, Elsevier, vol. 341(C).
    20. Sharma, Sumit & Swain, Manas R. & Mishra, Abhishek & Mathur, Anshu S. & Gupta, Ravi P. & Puri, Suresh K. & Ramakumar, S.S.V. & Sharma, Ajay K., 2021. "High solid loading and multiple-fed simultaneous saccharification and co-fermentation (mf-SSCF) of rice straw for high titer ethanol production at low cost," Renewable Energy, Elsevier, vol. 179(C), pages 1915-1924.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:173:y:2021:i:c:p:188-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.