IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v213y2025ics1364032125001297.html
   My bibliography  Save this article

Fermentation of sorghum with Aspergillus strains: A promising and sustainable pathway to enzyme production- comprehensive review

Author

Listed:
  • Somadder, Pratul Dipta
  • Trzcinski, Antoine
  • Chen, Guangnan
  • Chow, Yvonne
  • Manan, Musaalbakri Abdul

Abstract

The main objective of this article is to explore the utilization of sorghum as a potential substrate to produce valuable enzymes using Aspergillus strains. It focuses on two key aspects: (i) the environmental and economic sustainability of enzyme production from sorghum ii. enhancing enzymes and biofuel production through process and host cell optimization. A comparative study is conducted among sorghum, wheat, and corn to understand the current state of knowledge and research gap on large-scale enzyme production. Sorghum is an adaptable crop with all types of environments and is overall more sustainable than wheat and corn. With its rich composition of starch (60%-75%), lignin (11%-25%), hemicellulose (18%-25%), and cellulose (25%-45%), sorghum represents itself an excellent candidate for the enzyme, and also first and second-generation biofuel production. The advantages and associated challenges of the Aspergillus strains are then discussed for enzyme production. It highlights the development of an integrated process for enzyme and bioethanol production at a low cost without relying on external carbon and nitrogen sources through an eco-friendly and economically viable approach.

Suggested Citation

  • Somadder, Pratul Dipta & Trzcinski, Antoine & Chen, Guangnan & Chow, Yvonne & Manan, Musaalbakri Abdul, 2025. "Fermentation of sorghum with Aspergillus strains: A promising and sustainable pathway to enzyme production- comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:rensus:v:213:y:2025:i:c:s1364032125001297
    DOI: 10.1016/j.rser.2025.115456
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125001297
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115456?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Muhammad Hanif Mughal, 2019. "Ameliorative Role of Composite Flour Against Human Maladies," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 18(4), pages 13804-13811, June.
    2. David Bazié & Crépin Ibingou Dibala & Clarisse Pulcherie Kondombo & Mamounata Diao & Kiessoun Konaté & Hemayoro Sama & Adéchola Pierre Polycarpe Kayodé & Mamoudou H. Dicko, 2023. "Physicochemical and Nutritional Potential of Fifteen Sorghum Cultivars from Burkina Faso," Agriculture, MDPI, vol. 13(3), pages 1-13, March.
    3. Stamenković, Olivera S. & Siliveru, Kaliramesh & Veljković, Vlada B. & Banković-Ilić, Ivana B. & Tasić, Marija B. & Ciampitti, Ignacio A. & Đalović, Ivica G. & Mitrović, Petar M. & Sikora, Vladimir Š., 2020. "Production of biofuels from sorghum," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    4. Appiah-Nkansah, Nana Baah & Li, Jun & Rooney, William & Wang, Donghai, 2019. "A review of sweet sorghum as a viable renewable bioenergy crop and its techno-economic analysis," Renewable Energy, Elsevier, vol. 143(C), pages 1121-1132.
    5. Calliope Panoutsou & Efthymia Alexopoulou, 2020. "Costs and Profitability of Crops for Bioeconomy in the EU," Energies, MDPI, vol. 13(5), pages 1-27, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tinôco, Daniel & Genier, Hugo Leonardo André & da Silveira, Wendel Batista, 2021. "Technology valuation of cellulosic ethanol production by Kluyveromyces marxianus CCT 7735 from sweet sorghum bagasse at elevated temperatures," Renewable Energy, Elsevier, vol. 173(C), pages 188-196.
    2. Malherbe, Sarel J.M. & Cripwell, Rosemary A. & Favaro, Lorenzo & van Zyl, Willem H. & Viljoen-Bloom, Marinda, 2023. "Triticale and sorghum as feedstock for bioethanol production via consolidated bioprocessing," Renewable Energy, Elsevier, vol. 206(C), pages 498-505.
    3. Calliope Panoutsou & David Chiaramonti, 2020. "Socio-Economic Opportunities from Miscanthus Cultivation in Marginal Land for Bioenergy," Energies, MDPI, vol. 13(11), pages 1-22, May.
    4. Weiwei Wang, 2023. "Integrated Assessment of Economic Supply and Environmental Effects of Biomass Co-Firing in Coal Power Plants: A Case Study of Jiangsu, China," Energies, MDPI, vol. 16(6), pages 1-22, March.
    5. Anja Dolapčev Rakić & Slaven Prodanović & Vladimir Sikora & Sanja Vasiljević & Vesna Župunski & Radivoje Jevtić & Ana Uhlarik, 2025. "Potential for Enhancing Forage Sorghum Yield and Yield Components in a Changing Pannonian Climate," Agriculture, MDPI, vol. 15(13), pages 1-18, July.
    6. Adenike Akinsemolu & Helen Onyeaka & Omololu Fagunwa & Adewale Henry Adenuga, 2023. "Toward a Resilient Future: The Promise of Microbial Bioeconomy," Sustainability, MDPI, vol. 15(9), pages 1-13, April.
    7. Piotr Jurga & Efstratios Loizou & Stelios Rozakis, 2021. "Comparing Bioeconomy Potential at National vs. Regional Level Employing Input-Output Modeling," Energies, MDPI, vol. 14(6), pages 1-17, March.
    8. Pan, Yinghao & Lu, Yao & Dong, Yamin & Sun, Ying & Tang, Ruiqi & Xiao, Yiwen & Gao, Boliang & Zhu, Du, 2025. "The enzyme cocktail produced by endophytic Chaetomium globosum unlocks in situ production of sugars and shows great potential application in biorefinery," Renewable Energy, Elsevier, vol. 242(C).
    9. Hongshen Li & Hongrui Liu & Yufang Li & Jilin Nan & Chen Shi & Shizhong Li, 2021. "Combined Vapor Permeation and Continuous Solid-State Distillation for Energy-Efficient Bioethanol Production," Energies, MDPI, vol. 14(8), pages 1-15, April.
    10. Ben Atitallah, Imen & Ntaikou, Ioanna & Antonopoulou, Georgia & Alexandropoulou, Maria & Brysch-Herzberg, Michael & Nasri, Moncef & Lyberatos, Gerasimos & Mechichi, Tahar, 2020. "Evaluation of the non-conventional yeast strain Wickerhamomyces anomalus (Pichia anomala) X19 for enhanced bioethanol production using date palm sap as renewable feedstock," Renewable Energy, Elsevier, vol. 154(C), pages 71-81.
    11. de Rossi, Eduardo & Tavares, Maria Herminia Ferreira & Teleken, Joel Gustavo & Cremonez, Paulo André & Christ, Divair & Gomes, Simone Damasceno & Bariccatti, Reinaldo Aparecido, 2022. "Production of biogas by microorganisms with saccharine sorghum straw as substrate with or without alkaline and citric pretreatment," Renewable Energy, Elsevier, vol. 197(C), pages 617-626.
    12. Li, Qingyin & Yuan, Xiangzhou & Hu, Xun & Meers, Erik & Ong, Hwai Chyuan & Chen, Wei-Hsin & Duan, Peigao & Zhang, Shicheng & Lee, Ki Bong & Ok, Yong Sik, 2022. "Co-liquefaction of mixed biomass feedstocks for bio-oil production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    13. Hu, Ying & Hu, Mei & Jiang, Haiwei & Yu, Pengxin & Yang, Weiran, 2023. "Co-liquefaction of livestock manure and food waste: Synergistic effects and product combustion performance," Applied Energy, Elsevier, vol. 341(C).
    14. Zhang, Kai & Yin, Kedong & Yang, Wendong, 2022. "Predicting bioenergy power generation structure using a newly developed grey compositional data model: A case study in China," Renewable Energy, Elsevier, vol. 198(C), pages 695-711.
    15. Václav Voltr & Martin Hruška & Luboš Nobilis, 2021. "Complex Valuation of Energy from Agricultural Crops including Local Conditions," Energies, MDPI, vol. 14(5), pages 1-25, March.
    16. Juan Camilo Solarte-Toro & Carlos Ariel Cardona Alzate, 2023. "Sustainability of Biorefineries: Challenges and Perspectives," Energies, MDPI, vol. 16(9), pages 1-24, April.
    17. Cao, Jing & Yang, Jian & Yang, Yishuo & Wang, Zhaomei, 2021. "Enhanced enzymatic hydrolysis of sisal waste by sequential pretreatment with UV-catalyzed alkaline hydrogen peroxide and ionic liquid," Renewable Energy, Elsevier, vol. 169(C), pages 1157-1165.
    18. Mariana Abreu & Luís Silva & Belina Ribeiro & Alice Ferreira & Luís Alves & Susana M. Paixão & Luísa Gouveia & Patrícia Moura & Florbela Carvalheiro & Luís C. Duarte & Ana Luisa Fernando & Alberto Rei, 2022. "Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review," Energies, MDPI, vol. 15(12), pages 1-68, June.
    19. Dehghanzad, Mahsa & Shafiei, Marzieh & Karimi, Keikhosro, 2020. "Whole sweet sorghum plant as a promising feedstock for biobutanol production via biorefinery approaches: Techno-economic analysis," Renewable Energy, Elsevier, vol. 158(C), pages 332-342.
    20. Isler-Kaya, Asli & Karaosmanoglu, Filiz, 2022. "Life cycle assessment of safflower and sugar beet molasses-based biofuels," Renewable Energy, Elsevier, vol. 201(P1), pages 1127-1138.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:213:y:2025:i:c:s1364032125001297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.