IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v164y2021icp521-530.html
   My bibliography  Save this article

The use of palm oil biodiesel blends in locomotives: An economic, social and environmental analysis

Author

Listed:
  • Murta, Aurélio Lamare Soares
  • Freitas, Marcos Aurélio Vasconcelos De
  • Ferreira, Carla Guimarães
  • Da Costa Lima Peixoto, Mariana Marinho

Abstract

The biofuels identified as the most appropriate for use in existing internal combustion engines are bioethanol (for Otto engines) and biodiesel (for diesel engines). Supply of these fuels requires planting energy crops with high yield and photosynthetic efficiency in large tracts of land. The two most efficient crops are sugarcane (for bioethanol) and palm oil (for biodiesel), both of which have high energy densities and the potential to reduce greenhouse gas emissions if produced in sufficient quantities. This study seeks to show the economic, social and environmental advantages of palm cultivation in relation to others oilseeds. It also describes a pioneering project using palm oil biodiesel blend (B20: 20% biodiesel with fossil diesel) in railway locomotives used for ore transport. The B20 blend performed satisfactorily and promoted a significant change in the company’s fuel mix. It was found that there is a strong ecological appeal in the production of palm oil because of its low environmental impact, high energy balance density and high carbon sequestration by the trees. Besides, it was identified that bio-fuels can significantly replace liquid fossil fuels, the ethanol can be produced from cellulosic biomass, there are advantages of palm cultivation is relation to other oil seeds are demonstrated and the development of this segment in Brazil are guided by the National Biodiesel Production Plan (PNPB).

Suggested Citation

  • Murta, Aurélio Lamare Soares & Freitas, Marcos Aurélio Vasconcelos De & Ferreira, Carla Guimarães & Da Costa Lima Peixoto, Mariana Marinho, 2021. "The use of palm oil biodiesel blends in locomotives: An economic, social and environmental analysis," Renewable Energy, Elsevier, vol. 164(C), pages 521-530.
  • Handle: RePEc:eee:renene:v:164:y:2021:i:c:p:521-530
    DOI: 10.1016/j.renene.2020.08.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120313392
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.08.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mariano, Jacqueline Barboza & Lopes de Souza, José & Filho, Nelson Narciso, 2018. "Fiscal Regimes for Hydrocarbons Exploration and Production in Brazil," Energy Policy, Elsevier, vol. 119(C), pages 620-647.
    2. Pereira, Marcio Giannini & Camacho, Cristiane Farias & Freitas, Marcos Aurélio Vasconcelos & Silva, Neilton Fidelis da, 2012. "The renewable energy market in Brazil: Current status and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3786-3802.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isler-Kaya, Asli & Karaosmanoglu, Filiz, 2022. "Life cycle assessment of safflower and sugar beet molasses-based biofuels," Renewable Energy, Elsevier, vol. 201(P1), pages 1127-1138.
    2. Why, Elaine Siew Kuan & Ong, Hwai Chyuan & Lee, Hwei Voon & Chen, Wei-Hsin & Asikin-Mijan, N. & Varman, Mahendra & Loh, Wen Jing, 2022. "Single-step catalytic deoxygenation of palm feedstocks for the production of sustainable bio-jet fuel," Energy, Elsevier, vol. 239(PB).
    3. Aleksandra Kuzior & Marek Staszek, 2021. "Energy Management in the Railway Industry: A Case Study of Rail Freight Carrier in Poland," Energies, MDPI, vol. 14(21), pages 1-21, October.
    4. Helmi, Fatemeh & Helmi, Maryam & Hemmati, Alireza, 2022. "Phosphomolybdic acid/chitosan as acid solid catalyst using for biodiesel production from pomegranate seed oil via microwave heating system: RSM optimization and kinetic study," Renewable Energy, Elsevier, vol. 189(C), pages 881-898.
    5. Elgharbawy, Abdallah S. & Ali, Rehab M., 2022. "Techno-economic assessment of the biodiesel production using natural minerals rocks as a heterogeneous catalyst via conventional and ultrasonic techniques," Renewable Energy, Elsevier, vol. 191(C), pages 161-175.
    6. Mizik, Tamás & Gyarmati, Gábor, 2022. "A biodízel-termelés gazdasági és fenntarthatósági vizsgálata szakirodalom-elemzéssel [Systematic literature review on the economic dimension and sustainability aspects of biodiesel production]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 643-669.
    7. Vladimir Markov & Vyacheslav Kamaltdinov & Sergey Devyanin & Bowen Sa & Anatoly Zherdev & Viktor Furman, 2021. "Investigation of the Influence of Different Vegetable Oils as a Component of Blended Biofuel on Performance and Emission Characteristics of a Diesel Engine for Agricultural Machinery and Commercial Ve," Resources, MDPI, vol. 10(8), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Oliveira, Lucas Guedes & Aquila, Giancarlo & Balestrassi, Pedro Paulo & de Paiva, Anderson Paulo & de Queiroz, Anderson Rodrigo & de Oliveira Pamplona, Edson & Camatta, Ulisses Pessin, 2020. "Evaluating economic feasibility and maximization of social welfare of photovoltaic projects developed for the Brazilian northeastern coast: An attribute agreement analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    2. Koua, Blaise K. & Koffi, Paul Magloire E. & Gbaha, Prosper & Touré, Siaka, 2015. "Present status and overview of potential of renewable energy in Cote d’Ivoire," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 907-914.
    3. Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2019. "Assessing the effect of transmission constraints on wind power expansion in northeast Brazil," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    4. Aquila, Giancarlo & Coelho, Eden de Oliveira Pinto & Bonatto, Benedito Donizeti & Pamplona, Edson de Oliveira & Nakamura, Wilson Toshiro, 2021. "Perspective of uncertainty and risk from the CVaR-LCOE approach: An analysis of the case of PV microgeneration in Minas Gerais, Brazil," Energy, Elsevier, vol. 226(C).
    5. de Jong, Pieter & Kiperstok, Asher & Torres, Ednildo A., 2015. "Economic and environmental analysis of electricity generation technologies in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 725-739.
    6. Furtado, Lucas S. & Gonçalves, Edson & Costa, Luciano A.R., 2019. "Risk and rewards dynamics: Measuring the attractiveness of the fiscal regime in the presence of exploratory risks," Energy Policy, Elsevier, vol. 132(C), pages 1274-1287.
    7. Pottmaier, D. & Melo, C.R. & Sartor, M.N. & Kuester, S. & Amadio, T.M. & Fernandes, C.A.H. & Marinha, D. & Alarcon, O.E., 2013. "The Brazilian energy matrix: From a materials science and engineering perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 678-691.
    8. Hoffmann, Alessandra Schwertner & Carvalho, Gabriel Henriques de & Cardoso Jr., Ricardo Abranches Felix, 2019. "Environmental licensing challenges for the implementation of photovoltaic solar energy projects in Brazil," Energy Policy, Elsevier, vol. 132(C), pages 1143-1154.
    9. Pillot, Benjamin & de Siqueira, Sandro & Dias, João Batista, 2018. "Grid parity analysis of distributed PV generation using Monte Carlo approach: The Brazilian case," Renewable Energy, Elsevier, vol. 127(C), pages 974-988.
    10. Carvalho, Diego B. & Pinto, Bárbara L. & Guardia, Eduardo C. & Marangon Lima, José W., 2020. "Economic impact of anticipations or delays in the completion of power generation projects in the Brazilian energy market," Renewable Energy, Elsevier, vol. 147(P1), pages 1312-1320.
    11. Aquila, Giancarlo & Pamplona, Edson de Oliveira & Queiroz, Anderson Rodrigo de & Rotela Junior, Paulo & Fonseca, Marcelo Nunes, 2017. "An overview of incentive policies for the expansion of renewable energy generation in electricity power systems and the Brazilian experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1090-1098.
    12. Bundhoo, Zumar M.A., 2018. "Renewable energy exploitation in the small island developing state of Mauritius: Current practice and future potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2029-2038.
    13. Aquila, Giancarlo & Rotela Junior, Paulo & de Oliveira Pamplona, Edson & de Queiroz, Anderson Rodrigo, 2017. "Wind power feasibility analysis under uncertainty in the Brazilian electricity market," Energy Economics, Elsevier, vol. 65(C), pages 127-136.
    14. Azadian, Farshad & Radzi, M.A.M., 2013. "A general approach toward building integrated photovoltaic systems and its implementation barriers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 527-538.
    15. Nogueira, Carlos Eduardo Camargo & Vidotto, Magno Luiz & Niedzialkoski, Rosana Krauss & de Souza, Samuel Nelson Melegari & Chaves, Luiz Inácio & Edwiges, Thiago & Santos, Darlisson Bentes dos & Wernck, 2014. "Sizing and simulation of a photovoltaic-wind energy system using batteries, applied for a small rural property located in the south of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 151-157.
    16. Chaves, Luiz Inácio & da Silva, Marcelo José & de Souza, Samuel Nelson Melegari & Secco, Deonir & Rosa, Helton Aparecido & Nogueira, Carlos Eduardo Camargo & Frigo, Elisandro Pires, 2016. "Small-scale power generation analysis: Downdraft gasifier coupled to engine generator set," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 491-498.
    17. Hil Baky, Md. Abdullah & Rahman, Md. Mustafizur & Islam, A.K.M. Sadrul, 2017. "Development of renewable energy sector in Bangladesh: Current status and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1184-1197.
    18. De Oliveira, Fernando C. & Lopes, Thiago S.A. & Parente, Virginia & Bermann, Celio & Coelho, Suani T., 2019. "The Brazilian social fuel stamp program: Few strikes, many bloopers and stumbles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 121-128.
    19. Aur lio Lamare Soares Murta & Marcos Vasconcelos de Freitas, 2018. "CO2 Emissions Avoided Through the use of Biodiesel in the Brazilian Road System," International Journal of Energy Economics and Policy, Econjournals, vol. 8(2), pages 59-68.
    20. Christian Köhnke Mendonça & Christian A. Oberst & Reinhard Madlener, 2017. "The Future Expansion of HVDC Power Transmission in Brazil: A Scenario-Based Economic Evaluation," Operations Research Proceedings, in: Karl Franz Dörner & Ivana Ljubic & Georg Pflug & Gernot Tragler (ed.), Operations Research Proceedings 2015, pages 659-665, Springer.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:164:y:2021:i:c:p:521-530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.