IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v163y2021icp698-719.html
   My bibliography  Save this article

Evaluation of heat sink performance using PCM and vapor chamber/heat pipe

Author

Listed:
  • Ghanbarpour, A.
  • Hosseini, M.J.
  • Ranjbar, A.A.
  • Rahimi, M.
  • Bahrampoury, R.
  • Ghanbarpour, M.

Abstract

This paper presents a numerical study on heat sink thermal performance using phase change materials (PCM) and a vapor chamber for heat source cooling. Heat sink performance in both natural and forced convection heat transfer modes is investigated. The influence of various geometrical parameters such as number, height and thickness of fins for three different modes of conventional heat sink, PCM-based heat sink and heat sink integrated with vapor chamber is studied. Numerical results showed that the number of fins and fin height were more effective than the fin thickness in reducing heat source temperature. Furthermore, in natural convection, the addition of PCM and vapor chamber to the heat sink reduces the heat source temperature by a maximum of 33.1% and 9.5%, respectively, compared to a conventional heat sink. But in forced convection, the use of vapor chamber reduces the heat source temperature by 7.9% while the addition of PCM to the heat sink affects its performance adversely. In fact when fresh air is blown to the heat sink, it provides a higher temperature potential at all the surfaces.

Suggested Citation

  • Ghanbarpour, A. & Hosseini, M.J. & Ranjbar, A.A. & Rahimi, M. & Bahrampoury, R. & Ghanbarpour, M., 2021. "Evaluation of heat sink performance using PCM and vapor chamber/heat pipe," Renewable Energy, Elsevier, vol. 163(C), pages 698-719.
  • Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:698-719
    DOI: 10.1016/j.renene.2020.08.154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120313999
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.08.154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahmoud, Saad & Tang, Aaron & Toh, Chin & AL-Dadah, Raya & Soo, Sein Leung, 2013. "Experimental investigation of inserts configurations and PCM type on the thermal performance of PCM based heat sinks," Applied Energy, Elsevier, vol. 112(C), pages 1349-1356.
    2. Kalbasi, Rasool & Afrand, Masoud & Alsarraf, Jalal & Tran, Minh-Duc, 2019. "Studies on optimum fins number in PCM-based heat sinks," Energy, Elsevier, vol. 171(C), pages 1088-1099.
    3. Weng, Ying-Che & Cho, Hung-Pin & Chang, Chih-Chung & Chen, Sih-Li, 2011. "Heat pipe with PCM for electronic cooling," Applied Energy, Elsevier, vol. 88(5), pages 1825-1833, May.
    4. Sahoo, Santosh Kumar & Das, Mihir Kumar & Rath, Prasenjit, 2016. "Application of TCE-PCM based heat sinks for cooling of electronic components: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 550-582.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Li & Zheng Cui & Qun Cao & Wei Shao, 2021. "Increasing Efficiency of a Finned Heat Sink Using Orthogonal Analysis," Energies, MDPI, vol. 14(3), pages 1-15, February.
    2. Nadezhda S. Bondareva & Mohammad Ghalambaz & Mikhail A. Sheremet, 2021. "Influence of the Fin Shape on Heat Transport in Phase Change Material Heat Sink with Constant Heat Loads," Energies, MDPI, vol. 14(5), pages 1-15, March.
    3. Fan, Man & Suo, Hanxiao & Yang, Hua & Zhang, Xuemei & Li, Xiaofei & Guo, Leihong & Kong, Xiangfei, 2022. "Experimental study on thermophysical parameters of a solar assisted cascaded latent heat thermal energy storage (CLHTES) system," Energy, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Kahwaji, Samer & Johnson, Michel B. & Kheirabadi, Ali C. & Groulx, Dominic & White, Mary Anne, 2018. "A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications," Energy, Elsevier, vol. 162(C), pages 1169-1182.
    3. Srikanth, R. & Nemani, Pavan & Balaji, C., 2015. "Multi-objective geometric optimization of a PCM based matrix type composite heat sink," Applied Energy, Elsevier, vol. 156(C), pages 703-714.
    4. Safari, Vahid & Kamkari, Babak & Hooman, Kamel & Khodadadi, J.M., 2022. "Sensitivity analysis of design parameters for melting process of lauric acid in the vertically and horizontally oriented rectangular thermal storage units," Energy, Elsevier, vol. 255(C).
    5. Nadezhda S. Bondareva & Mohammad Ghalambaz & Mikhail A. Sheremet, 2021. "Influence of the Fin Shape on Heat Transport in Phase Change Material Heat Sink with Constant Heat Loads," Energies, MDPI, vol. 14(5), pages 1-15, March.
    6. Sharma, Chander Shekhar & Tiwari, Manish K. & Zimmermann, Severin & Brunschwiler, Thomas & Schlottig, Gerd & Michel, Bruno & Poulikakos, Dimos, 2015. "Energy efficient hotspot-targeted embedded liquid cooling of electronics," Applied Energy, Elsevier, vol. 138(C), pages 414-422.
    7. Sahoo, Santosh Kumar & Das, Mihir Kumar & Rath, Prasenjit, 2016. "Application of TCE-PCM based heat sinks for cooling of electronic components: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 550-582.
    8. Emam, Mohamed & Ookawara, Shinichi & Ahmed, Mahmoud, 2019. "Thermal management of electronic devices and concentrator photovoltaic systems using phase change material heat sinks: Experimental investigations," Renewable Energy, Elsevier, vol. 141(C), pages 322-339.
    9. See, Y.S. & Ho, J.Y. & Leong, K.C. & Wong, T.N., 2022. "Experimental investigation of a topology-optimized phase change heat sink optimized for natural convection," Applied Energy, Elsevier, vol. 314(C).
    10. Tang, Song-Zhen & He, Yan & He, Ya-Ling & Wang, Fei-Long, 2020. "Enhancing the thermal response of a latent heat storage system for suppressing temperature fluctuation of dusty flue gas," Applied Energy, Elsevier, vol. 266(C).
    11. Jouhara, Hussam & Meskimmon, Richard, 2014. "Heat pipe based thermal management systems for energy-efficient data centres," Energy, Elsevier, vol. 77(C), pages 265-270.
    12. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    13. Li, Huiqiang & Chen, Huisu & Li, Xiangyu & Sanjayan, Jay G., 2014. "Development of thermal energy storage composites and prevention of PCM leakage," Applied Energy, Elsevier, vol. 135(C), pages 225-233.
    14. Sun, Xiaoqin & Zhang, Quan & Medina, Mario A. & Liao, Shuguang, 2015. "Performance of a free-air cooling system for telecommunications base stations using phase change materials (PCMs): In-situ tests," Applied Energy, Elsevier, vol. 147(C), pages 325-334.
    15. Yu, De-Hai & He, Zhi-Zhu, 2019. "Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management," Applied Energy, Elsevier, vol. 247(C), pages 503-516.
    16. Zhang, Jiajie & Li, Rui & Zhang, Mengbin & Peng, Jingqi & Fan, Yuchen & Ma, Suxia & Zhang, Jiansheng, 2023. "A novel measurement method for ash deposition based on coplanar capacitance principle: Theoretical, numerical and experimental studies," Energy, Elsevier, vol. 282(C).
    17. Zeng, Hongyu & Wang, Yuqing & Shi, Yixiang & Cai, Ningsheng & Yuan, Dazhong, 2018. "Highly thermal integrated heat pipe-solid oxide fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 613-619.
    18. Tian, Shen & Yang, Qifan & Hui, Na & Bai, Haozhi & Shao, Shuangquan & Liu, Shengchun, 2020. "Discharging process and performance of a portable cold thermal energy storage panel driven by embedded heat pipes," Energy, Elsevier, vol. 205(C).
    19. Wang, Hongfei & Wang, Fanxu & Li, Zongtao & Tang, Yong & Yu, Binhai & Yuan, Wei, 2016. "Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material," Applied Energy, Elsevier, vol. 176(C), pages 221-232.
    20. Bilardo, Matteo & Fraisse, Gilles & Pailha, Mickael & Fabrizio, Enrico, 2020. "Design and experimental analysis of an Integral Collector Storage (ICS) prototype for DHW production," Applied Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:698-719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.