IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v156y2020icp804-819.html
   My bibliography  Save this article

Negative correlation learning-based RELM ensemble model integrated with OVMD for multi-step ahead wind speed forecasting

Author

Listed:
  • Peng, Tian
  • Zhang, Chu
  • Zhou, Jianzhong
  • Nazir, Muhammad Shahzad

Abstract

Accurate and reliable wind speed forecasting is vital in power system scheduling and management. Ensemble techniques are widely employed to enhance wind speed forecasting accuracy. This paper proposes a negative correlation learning-based regularized extreme learning machine ensemble model (NCL-RELM) integrated with optimal variational mode decomposition (OVMD) and sample entropy (SampEn) for multi-step ahead wind speed forecasting. For this purpose, the original wind speed time series is firstly decomposed into a few variational modes and a residue using OVMD, and then the decomposed subseries with approximate SampEn values are aggregated into a new subseries to reduce the computational burden. Secondly, a NCL-RELM ensemble model is employed to model each aggregated subseries. The NCL technique is employed to enhance the diversity among multiple sub-RELM models such that the predictability of a single RELM model can be enhanced. Finally, the prediction results of all subseries are added up to obtain an aggregated result for the original wind speed. The simulation results indicate that: (1) the NCL-RELM model performs better than other ensemble approaches including BAGTREE, BOOST and random forest; (2) the proposed OS-NCL-RELM model obtains the best statistical metrics from 1- to 3-step ahead forecasting compared with the other nine benchmark models.

Suggested Citation

  • Peng, Tian & Zhang, Chu & Zhou, Jianzhong & Nazir, Muhammad Shahzad, 2020. "Negative correlation learning-based RELM ensemble model integrated with OVMD for multi-step ahead wind speed forecasting," Renewable Energy, Elsevier, vol. 156(C), pages 804-819.
  • Handle: RePEc:eee:renene:v:156:y:2020:i:c:p:804-819
    DOI: 10.1016/j.renene.2020.03.168
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120305012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Zhenhai & Zhao, Weigang & Lu, Haiyan & Wang, Jianzhou, 2012. "Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model," Renewable Energy, Elsevier, vol. 37(1), pages 241-249.
    2. Li, Yanfei & Shi, Huipeng & Han, Fengze & Duan, Zhu & Liu, Hui, 2019. "Smart wind speed forecasting approach using various boosting algorithms, big multi-step forecasting strategy," Renewable Energy, Elsevier, vol. 135(C), pages 540-553.
    3. Liu, Da & Niu, Dongxiao & Wang, Hui & Fan, Leilei, 2014. "Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm," Renewable Energy, Elsevier, vol. 62(C), pages 592-597.
    4. Liu, Hui & Tian, Hongqi & Liang, Xifeng & Li, Yanfei, 2015. "New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, Mind Evolutionary Algorithm and Artificial Neural Networks," Renewable Energy, Elsevier, vol. 83(C), pages 1066-1075.
    5. Tian Peng & Jianzhong Zhou & Chu Zhang & Na Sun, 2018. "Modeling and Combined Application of Orthogonal Chaotic NSGA-II and Improved TOPSIS to Optimize a Conceptual Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(11), pages 3781-3799, September.
    6. Lei, Ma & Shiyan, Luan & Chuanwen, Jiang & Hongling, Liu & Yan, Zhang, 2009. "A review on the forecasting of wind speed and generated power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 915-920, May.
    7. Zhang, Yachao & Le, Jian & Liao, Xiaobing & Zheng, Feng & Li, Yinghai, 2019. "A novel combination forecasting model for wind power integrating least square support vector machine, deep belief network, singular spectrum analysis and locality-sensitive hashing," Energy, Elsevier, vol. 168(C), pages 558-572.
    8. Wenlong Fu & Kai Wang & Jiawen Tan & Kaixuan Shao, 2020. "Vibration Tendency Prediction Approach for Hydropower Generator Fused with Multiscale Dominant Ingredient Chaotic Analysis, Adaptive Mutation Grey Wolf Optimizer, and KELM," Complexity, Hindawi, vol. 2020, pages 1-20, February.
    9. Sun, Na & Zhou, Jianzhong & Chen, Lu & Jia, Benjun & Tayyab, Muhammad & Peng, Tian, 2018. "An adaptive dynamic short-term wind speed forecasting model using secondary decomposition and an improved regularized extreme learning machine," Energy, Elsevier, vol. 165(PB), pages 939-957.
    10. Zhao, Xuejing & Wang, Chen & Su, Jinxia & Wang, Jianzhou, 2019. "Research and application based on the swarm intelligence algorithm and artificial intelligence for wind farm decision system," Renewable Energy, Elsevier, vol. 134(C), pages 681-697.
    11. Chu Zhang & Chaoshun Li & Tian Peng & Xin Xia & Xiaoming Xue & Wenlong Fu & Jianzhong Zhou, 2018. "Modeling and Synchronous Optimization of Pump Turbine Governing System Using Sparse Robust Least Squares Support Vector Machine and Hybrid Backtracking Search Algorithm," Energies, MDPI, vol. 11(11), pages 1-21, November.
    12. Wu, Chunying & Wang, Jianzhou & Chen, Xuejun & Du, Pei & Yang, Wendong, 2020. "A novel hybrid system based on multi-objective optimization for wind speed forecasting," Renewable Energy, Elsevier, vol. 146(C), pages 149-165.
    13. Ye, Lin & Zhao, Yongning & Zeng, Cheng & Zhang, Cihang, 2017. "Short-term wind power prediction based on spatial model," Renewable Energy, Elsevier, vol. 101(C), pages 1067-1074.
    14. Wang, Shouxiang & Zhang, Na & Wu, Lei & Wang, Yamin, 2016. "Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method," Renewable Energy, Elsevier, vol. 94(C), pages 629-636.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Chu & Hu, Haowen & Ji, Jie & Liu, Kang & Xia, Xin & Nazir, Muhammad Shahzad & Peng, Tian, 2023. "An evolutionary stacked generalization model based on deep learning and improved grasshopper optimization algorithm for predicting the remaining useful life of PEMFC," Applied Energy, Elsevier, vol. 330(PA).
    2. Fu, Wenlong & Fang, Ping & Wang, Kai & Li, Zhenxing & Xiong, Dongzhen & Zhang, Kai, 2021. "Multi-step ahead short-term wind speed forecasting approach coupling variational mode decomposition, improved beetle antennae search algorithm-based synchronous optimization and Volterra series model," Renewable Energy, Elsevier, vol. 179(C), pages 1122-1139.
    3. Liu, Hui & Duan, Zhu & Chen, Chao, 2020. "Wind speed big data forecasting using time-variant multi-resolution ensemble model with clustering auto-encoder," Applied Energy, Elsevier, vol. 280(C).
    4. Acikgoz, Hakan & Budak, Umit & Korkmaz, Deniz & Yildiz, Ceyhun, 2021. "WSFNet: An efficient wind speed forecasting model using channel attention-based densely connected convolutional neural network," Energy, Elsevier, vol. 233(C).
    5. Heng, Jiani & Hong, Yongmiao & Hu, Jianming & Wang, Shouyang, 2022. "Probabilistic and deterministic wind speed forecasting based on non-parametric approaches and wind characteristics information," Applied Energy, Elsevier, vol. 306(PA).
    6. Zhang, Chu & Ma, Huixin & Hua, Lei & Sun, Wei & Nazir, Muhammad Shahzad & Peng, Tian, 2022. "An evolutionary deep learning model based on TVFEMD, improved sine cosine algorithm, CNN and BiLSTM for wind speed prediction," Energy, Elsevier, vol. 254(PA).
    7. Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
    8. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    9. Yang, Yang & Lang, Jin & Wu, Jian & Zhang, Yanyan & Su, Lijie & Song, Xiangman, 2022. "Wind speed forecasting with correlation network pruning and augmentation: A two-phase deep learning method," Renewable Energy, Elsevier, vol. 198(C), pages 267-282.
    10. Yang, Rui & Liu, Hui & Nikitas, Nikolaos & Duan, Zhu & Li, Yanfei & Li, Ye, 2022. "Short-term wind speed forecasting using deep reinforcement learning with improved multiple error correction approach," Energy, Elsevier, vol. 239(PB).
    11. Chengcheng Gu & Hua Li, 2022. "Review on Deep Learning Research and Applications in Wind and Wave Energy," Energies, MDPI, vol. 15(4), pages 1-19, February.
    12. Gairaa, Kacem & Voyant, Cyril & Notton, Gilles & Benkaciali, Saïd & Guermoui, Mawloud, 2022. "Contribution of ordinal variables to short-term global solar irradiation forecasting for sites with low variabilities," Renewable Energy, Elsevier, vol. 183(C), pages 890-902.
    13. Fu, Wenlong & Zhang, Kai & Wang, Kai & Wen, Bin & Fang, Ping & Zou, Feng, 2021. "A hybrid approach for multi-step wind speed forecasting based on two-layer decomposition, improved hybrid DE-HHO optimization and KELM," Renewable Energy, Elsevier, vol. 164(C), pages 211-229.
    14. Feng, Zhong-kai & Huang, Qing-qing & Niu, Wen-jing & Yang, Tao & Wang, Jia-yang & Wen, Shi-ping, 2022. "Multi-step-ahead solar output time series prediction with gate recurrent unit neural network using data decomposition and cooperation search algorithm," Energy, Elsevier, vol. 261(PA).
    15. Ma, Huixin & Zhang, Chu & Peng, Tian & Nazir, Muhammad Shahzad & Li, Yiman, 2022. "An integrated framework of gated recurrent unit based on improved sine cosine algorithm for photovoltaic power forecasting," Energy, Elsevier, vol. 256(C).
    16. Peng, Tian & Zhang, Chu & Zhou, Jianzhong & Nazir, Muhammad Shahzad, 2021. "An integrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting," Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    2. Li, Dan & Jiang, Fuxin & Chen, Min & Qian, Tao, 2022. "Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks," Energy, Elsevier, vol. 238(PC).
    3. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    4. Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
    5. Wang, Jianzhou & Niu, Tong & Lu, Haiyan & Guo, Zhenhai & Yang, Wendong & Du, Pei, 2018. "An analysis-forecast system for uncertainty modeling of wind speed: A case study of large-scale wind farms," Applied Energy, Elsevier, vol. 211(C), pages 492-512.
    6. Chen, Xue-Jun & Zhao, Jing & Jia, Xiao-Zhong & Li, Zhong-Long, 2021. "Multi-step wind speed forecast based on sample clustering and an optimized hybrid system," Renewable Energy, Elsevier, vol. 165(P1), pages 595-611.
    7. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    8. Lu, Peng & Ye, Lin & Tang, Yong & Zhao, Yongning & Zhong, Wuzhi & Qu, Ying & Zhai, Bingxu, 2021. "Ultra-short-term combined prediction approach based on kernel function switch mechanism," Renewable Energy, Elsevier, vol. 164(C), pages 842-866.
    9. Yin, Hao & Ou, Zuhong & Huang, Shengquan & Meng, Anbo, 2019. "A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition," Energy, Elsevier, vol. 189(C).
    10. Fu, Wenlong & Fang, Ping & Wang, Kai & Li, Zhenxing & Xiong, Dongzhen & Zhang, Kai, 2021. "Multi-step ahead short-term wind speed forecasting approach coupling variational mode decomposition, improved beetle antennae search algorithm-based synchronous optimization and Volterra series model," Renewable Energy, Elsevier, vol. 179(C), pages 1122-1139.
    11. Jianzhong Zhou & Na Sun & Benjun Jia & Tian Peng, 2018. "A Novel Decomposition-Optimization Model for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 11(7), pages 1-27, July.
    12. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    13. Yanbing Lin & Hongyuan Luo & Deyun Wang & Haixiang Guo & Kejun Zhu, 2017. "An Ensemble Model Based on Machine Learning Methods and Data Preprocessing for Short-Term Electric Load Forecasting," Energies, MDPI, vol. 10(8), pages 1-16, August.
    14. Jafarzadeh Ghoushchi, Saeid & Manjili, Sobhan & Mardani, Abbas & Saraji, Mahyar Kamali, 2021. "An extended new approach for forecasting short-term wind power using modified fuzzy wavelet neural network: A case study in wind power plant," Energy, Elsevier, vol. 223(C).
    15. Emeksiz, Cem & Tan, Mustafa, 2022. "Multi-step wind speed forecasting and Hurst analysis using novel hybrid secondary decomposition approach," Energy, Elsevier, vol. 238(PA).
    16. Dong, Yingchao & Zhang, Hongli & Wang, Cong & Zhou, Xiaojun, 2021. "A novel hybrid model based on Bernstein polynomial with mixture of Gaussians for wind power forecasting," Applied Energy, Elsevier, vol. 286(C).
    17. Wang, Deyun & Luo, Hongyuan & Grunder, Olivier & Lin, Yanbing & Guo, Haixiang, 2017. "Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm," Applied Energy, Elsevier, vol. 190(C), pages 390-407.
    18. Hu, Huanling & Wang, Lin & Tao, Rui, 2021. "Wind speed forecasting based on variational mode decomposition and improved echo state network," Renewable Energy, Elsevier, vol. 164(C), pages 729-751.
    19. Wang, Jianzhou & Dong, Yunxuan & Zhang, Kequan & Guo, Zhenhai, 2017. "A numerical model based on prior distribution fuzzy inference and neural networks," Renewable Energy, Elsevier, vol. 112(C), pages 486-497.
    20. Niu, Xinsong & Wang, Jiyang, 2019. "A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 241(C), pages 519-539.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:156:y:2020:i:c:p:804-819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.