IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v155y2020icp990-1008.html
   My bibliography  Save this article

Performance assessment and optimization of a solar cooling system to satisfy renewable energy ratio (RER) requirements in multi-family buildings

Author

Listed:
  • Bilardo, Matteo
  • Ferrara, Maria
  • Fabrizio, Enrico

Abstract

In order to meet European targets for decarbonisation in 2050, the amount of building energy needs that must be covered through RES is going to increase. Considering the increasing needs for space cooling, mainly due to climate change, technical solutions involving renewable sources of energy for cooling purposes are of great interest. Solar absorption chillers represent a valid answer, but their use in the residential sector is at early stage.

Suggested Citation

  • Bilardo, Matteo & Ferrara, Maria & Fabrizio, Enrico, 2020. "Performance assessment and optimization of a solar cooling system to satisfy renewable energy ratio (RER) requirements in multi-family buildings," Renewable Energy, Elsevier, vol. 155(C), pages 990-1008.
  • Handle: RePEc:eee:renene:v:155:y:2020:i:c:p:990-1008
    DOI: 10.1016/j.renene.2020.03.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120303669
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Palomba, Valeria & Vasta, Salvatore & Freni, Angelo & Pan, Quanwen & Wang, Ruzhu & Zhai, Xiaoqiang, 2017. "Increasing the share of renewables through adsorption solar cooling: A validated case study," Renewable Energy, Elsevier, vol. 110(C), pages 126-140.
    2. Ferrara, Maria & Rolfo, Andrea & Prunotto, Federico & Fabrizio, Enrico, 2019. "EDeSSOpt – Energy Demand and Supply Simultaneous Optimization for cost-optimized design: Application to a multi-family building," Applied Energy, Elsevier, vol. 236(C), pages 1231-1248.
    3. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    4. Buonomano, A. & Forzano, C. & Kalogirou, S.A. & Palombo, A., 2019. "Building-façade integrated solar thermal collectors: Energy-economic performance and indoor comfort simulation model of a water based prototype for heating, cooling, and DHW production," Renewable Energy, Elsevier, vol. 137(C), pages 20-36.
    5. Maria Ferrara & Valentina Monetti & Enrico Fabrizio, 2018. "Cost-Optimal Analysis for Nearly Zero Energy Buildings Design and Optimization: A Critical Review," Energies, MDPI, vol. 11(6), pages 1-32, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Wanshi & Wu, Yunlei & Li, Xiuwei & Cheng, Feng & Zhang, Xiaosong, 2021. "Performance investigation of the wood-based heat localization regenerator in liquid desiccant cooling system," Renewable Energy, Elsevier, vol. 179(C), pages 133-149.
    2. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    3. Ferrara, Maria & Della Santa, Francesco & Bilardo, Matteo & De Gregorio, Alessandro & Mastropietro, Antonio & Fugacci, Ulderico & Vaccarino, Francesco & Fabrizio, Enrico, 2021. "Design optimization of renewable energy systems for NZEBs based on deep residual learning," Renewable Energy, Elsevier, vol. 176(C), pages 590-605.
    4. Afzal, Asif & Buradi, Abdulrajak & Jilte, Ravindra & Shaik, Saboor & Kaladgi, Abdul Razak & Arıcı, Muslum & Lee, Chew Tin & Nižetić, Sandro, 2023. "Optimizing the thermal performance of solar energy devices using meta-heuristic algorithms: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Zhang, Sheng & Ocłoń, Paweł & Klemeš, Jiří Jaromír & Michorczyk, Piotr & Pielichowska, Kinga & Pielichowski, Krzysztof, 2022. "Renewable energy systems for building heating, cooling and electricity production with thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    6. Aniza, Ria & Chen, Wei-Hsin & Lin, Yu-Ying & Tran, Khanh-Quang & Chang, Jo-Shu & Lam, Su Shiung & Park, Young-Kwon & Kwon, Eilhann E. & Tabatabaei, Meisam, 2021. "Independent parallel pyrolysis kinetics of extracted proteins and lipids as well as model carbohydrates in microalgae," Applied Energy, Elsevier, vol. 300(C).
    7. Angela Amato & Matteo Bilardo & Enrico Fabrizio & Valentina Serra & Filippo Spertino, 2021. "Energy Evaluation of a PV-Based Test Facility for Assessing Future Self-Sufficient Buildings," Energies, MDPI, vol. 14(2), pages 1-23, January.
    8. Ge, Yongkai & Ma, Yue & Wang, Qingrui & Yang, Qing & Xing, Lu & Ba, Shusong, 2023. "Techno-economic-environmental assessment and performance comparison of a building distributed multi-energy system under various operation strategies," Renewable Energy, Elsevier, vol. 204(C), pages 685-696.
    9. Bilardo, Matteo & Ferrara, Maria & Fabrizio, Enrico, 2022. "The role of solar cooling for nearly zero energy multifamily buildings: Performance analysis across different climates," Renewable Energy, Elsevier, vol. 194(C), pages 1343-1353.
    10. Hajialigol, Parisa & Fathi, Amirhossein & Saboohi, Yadollah, 2021. "Modeling and optimization of an integrated multi-generation solar system with variable heat to power ratio for supplying residential and industrial demands," Renewable Energy, Elsevier, vol. 174(C), pages 786-798.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Napolitano, Davide Ferdinando, 2019. "Retrofit of villas on Mediterranean coastlines: Pareto optimization with a view to energy-efficiency and cost-effectiveness," Applied Energy, Elsevier, vol. 254(C).
    2. Kittisak Lohwanitchai & Daranee Jareemit, 2021. "Modeling Energy Efficiency Performance and Cost-Benefit Analysis Achieving Net-Zero Energy Building Design: Case Studies of Three Representative Offices in Thailand," Sustainability, MDPI, vol. 13(9), pages 1-24, May.
    3. Miguel-Angel Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Fernando Rueda-Martinez & Alberto-Jesus Perea-Moreno, 2020. "Zapote Seed ( Pouteria mammosa L. ) Valorization for Thermal Energy Generation in Tropical Climates," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    4. Mehrpooya, Mehdi & Ansarinasab, Hojat & Mousavi, Seyed Ali, 2021. "Life cycle assessment and exergoeconomic analysis of the multi-generation system based on fuel cell for methanol, power, and heat production," Renewable Energy, Elsevier, vol. 172(C), pages 1314-1332.
    5. Rafael Herrera-Limones & Ángel Luis León-Rodríguez & Álvaro López-Escamilla, 2019. "Solar Decathlon Latin America and Caribbean: Comfort and the Balance between Passive and Active Design," Sustainability, MDPI, vol. 11(13), pages 1-17, June.
    6. Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.
    7. Binju P Raj & Chandan Swaroop Meena & Nehul Agarwal & Lohit Saini & Shabir Hussain Khahro & Umashankar Subramaniam & Aritra Ghosh, 2021. "A Review on Numerical Approach to Achieve Building Energy Efficiency for Energy, Economy and Environment (3E) Benefit," Energies, MDPI, vol. 14(15), pages 1-26, July.
    8. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    9. Heangwoo Lee & Chang-ho Choi & Minki Sung, 2018. "Development of a Dimming Lighting Control System Using General Illumination and Location-Awareness Technology," Energies, MDPI, vol. 11(11), pages 1-19, November.
    10. Nilofar Asim & Marzieh Badiei & Masita Mohammad & Halim Razali & Armin Rajabi & Lim Chin Haw & Mariyam Jameelah Ghazali, 2022. "Sustainability of Heating, Ventilation and Air-Conditioning (HVAC) Systems in Buildings—An Overview," IJERPH, MDPI, vol. 19(2), pages 1-16, January.
    11. Moldovan, Camelia Liliana & Păltănea, Radu & Visa, Ion, 2020. "Improvement of clear sky models for direct solar irradiance considering turbidity factor variable during the day," Renewable Energy, Elsevier, vol. 161(C), pages 559-569.
    12. Piotr Michalak, 2022. "Thermal—Airflow Coupling in Hourly Energy Simulation of a Building with Natural Stack Ventilation," Energies, MDPI, vol. 15(11), pages 1-18, June.
    13. Calabrese, Luigi & Brancato, Vincenza & Paolomba, Valeria & Proverbio, Edoardo, 2019. "An experimental study on the corrosion sensitivity of metal alloys for usage in PCM thermal energy storages," Renewable Energy, Elsevier, vol. 138(C), pages 1018-1027.
    14. Andrea Frattolillo & Laura Canale & Giorgio Ficco & Costantino C. Mastino & Marco Dell’Isola, 2020. "Potential for Building Façade-Integrated Solar Thermal Collectors in a Highly Urbanized Context," Energies, MDPI, vol. 13(21), pages 1-18, November.
    15. Hassan Gholami & Harald Nils Røstvik & Koen Steemers, 2021. "The Contribution of Building-Integrated Photovoltaics (BIPV) to the Concept of Nearly Zero-Energy Cities in Europe: Potential and Challenges Ahead," Energies, MDPI, vol. 14(19), pages 1-22, September.
    16. Cheng, Jiaji & Niu, Shaoshuai & Kang, Moyun & Liu, Yuqi & Zhang, Feng & Qu, Wenjuan & Guan, Yu & Li, Shaoxiang, 2022. "The thermal behavior and flame retardant performance of phase change material microcapsules with modified carbon nanotubes," Energy, Elsevier, vol. 240(C).
    17. Ciardiello, Adriana & Rosso, Federica & Dell'Olmo, Jacopo & Ciancio, Virgilio & Ferrero, Marco & Salata, Ferdinando, 2020. "Multi-objective approach to the optimization of shape and envelope in building energy design," Applied Energy, Elsevier, vol. 280(C).
    18. Buonomano, Annamaria, 2020. "Building to Vehicle to Building concept: A comprehensive parametric and sensitivity analysis for decision making aims," Applied Energy, Elsevier, vol. 261(C).
    19. Zainab I. AL-Assadi & Fawzia Irhayyim AL-Assadi, 2021. "Enhancing the aesthetic aspect of the solar systems used as facades for building by designing multi-layer optical coatings," Technium, Technium Science, vol. 3(11), pages 1-10, December.
    20. Ming Hu, 2019. "Cost-Effective Options for the Renovation of an Existing Education Building toward the Nearly Net-Zero Energy Goal—Life-Cycle Cost Analysis," Sustainability, MDPI, vol. 11(8), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:155:y:2020:i:c:p:990-1008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.