IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v155y2020icp278-285.html

Effects of porous electrode pore size and operating flow rate on the energy production of capacitive energy extraction

Author

Listed:
  • Nasir, Muhammad
  • Nakanishi, Yuji
  • Patmonoaji, Anindityo
  • Suekane, Tetsuya

Abstract

This study investigated essential parameters of capacitive energy extraction based on double-layer expansion (CDLE) device. The parameters, in particular, were the porous electrode pore size diameter and the operating flow rate. Understanding both parameters will help to improve the performance of the CDLE device for practical application. CDLE cycle was performed under different flow rates using three different samples with different average pore sizes. The data were analyzed based on the Gouy-Chapman-Stern (GCS) theory. It was found that higher energies were extracted with smaller average pore size, because it increases the number of transferred charges, due to the decrease in the diffusion distance of ions. Consequently, the redistribution of ions is also likely to occur and accelerates the rate of increase in the voltage. In addition, the energy extracted increases with the external voltage. Higher external voltage increases the charge transfer and reduces the differences between the voltage rise and the voltage drops during the solution exchange process. It was also found that the extracted energies in all the cycles were identical at different flow rates owing to no change in electric double layer (EDL) formation. However, as the flow rate increases, ions diffusion was accelerated, which improve power production.

Suggested Citation

  • Nasir, Muhammad & Nakanishi, Yuji & Patmonoaji, Anindityo & Suekane, Tetsuya, 2020. "Effects of porous electrode pore size and operating flow rate on the energy production of capacitive energy extraction," Renewable Energy, Elsevier, vol. 155(C), pages 278-285.
  • Handle: RePEc:eee:renene:v:155:y:2020:i:c:p:278-285
    DOI: 10.1016/j.renene.2020.03.163
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120304961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Bruce E. Logan & Menachem Elimelech, 2012. "Membrane-based processes for sustainable power generation using water," Nature, Nature, vol. 488(7411), pages 313-319, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Jian & Wu, Nianyuan & Li, Li & Xie, Meina & Xie, Shan & Wang, Xiaonan & Brandon, Nigel & Sun, Yifei & Chen, Jincan & Zhao, Yingru, 2022. "Performance and parameter optimization of a capacitive salinity/heat engine for harvesting salinity difference energy and low grade heat," Renewable Energy, Elsevier, vol. 183(C), pages 283-293.
    2. Zhi Zou & Longcheng Liu & Shuo Meng & Xiaolei Bian & Yongmei Li, 2021. "Applicability of Different Double-Layer Models for the Performance Assessment of the Capacitive Energy Extraction Based on Double Layer Expansion (CDLE) Technique," Energies, MDPI, vol. 14(18), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maisonneuve, Jonathan & Laflamme, Claude B. & Pillay, Pragasen, 2016. "Experimental investigation of pressure retarded osmosis for renewable energy conversion: Towards increased net power," Applied Energy, Elsevier, vol. 164(C), pages 425-435.
    2. Jiadong Tang & Yun Wang & Hongyang Yang & Qianqian Zhang & Ce Wang & Leyuan Li & Zilong Zheng & Yuhong Jin & Hao Wang & Yifan Gu & Tieyong Zuo, 2024. "All-natural 2D nanofluidics as highly-efficient osmotic energy generators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Kehan Zou & Haoyang Ling & Qingchen Wang & Congcong Zhu & Zhehua Zhang & Dehua Huang & Ke Li & Yuge Wu & Weiwen Xin & Xiang-Yu Kong & Lei Jiang & Liping Wen, 2024. "Turing-type nanochannel membranes with extrinsic ion transport pathways for high-efficiency osmotic energy harvesting," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Dan Chen & Xuewen Cao & Xuefeng Tian & Qin Peng & Jun Zhang & Jiacheng Zhang & Yihui Yuan & Ning Wang, 2025. "Highly Enriched Metal Elements in Marine Biological Shells as New Resources for the Sustainable Extraction of Metals," Sustainability, MDPI, vol. 17(6), pages 1-13, March.
    6. Bui, Tri Quang & Magnussen, Ole-Petter & Cao, Vinh Duy & Wang, Wei & Kjøniksen, Anna-Lena & Aaker, Olav, 2021. "Osmotic engine converting energy from salinity difference to a hydraulic accumulator by utilizing polyelectrolyte hydrogels," Energy, Elsevier, vol. 232(C).
    7. Wan, Chun Feng & Chung, Tai-Shung, 2016. "Energy recovery by pressure retarded osmosis (PRO) in SWRO–PRO integrated processes," Applied Energy, Elsevier, vol. 162(C), pages 687-698.
    8. He, Wei & Wang, Jihong, 2017. "Feasibility study of energy storage by concentrating/desalinating water: Concentrated Water Energy Storage," Applied Energy, Elsevier, vol. 185(P1), pages 872-884.
    9. Maisonneuve, Jonathan & Chintalacheruvu, Sanjana, 2019. "Increasing osmotic power and energy with maximum power point tracking," Applied Energy, Elsevier, vol. 238(C), pages 683-695.
    10. Kang, Byeong Dong & Kim, Hyun Jung & Lee, Moon Gu & Kim, Dong-Kwon, 2015. "Numerical study on energy harvesting from concentration gradient by reverse electrodialysis in anodic alumina nanopores," Energy, Elsevier, vol. 86(C), pages 525-538.
    11. Sagar Roy & Smruti Ragunath, 2018. "Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constraints and Challenges," Energies, MDPI, vol. 11(11), pages 1-32, November.
    12. Farrell, Eanna & Hassan, Mohamed I. & Tufa, Ramato A. & Tuomiranta, Arttu & Avci, Ahmet H. & Politano, Antonio & Curcio, Efrem & Arafat, Hassan A., 2017. "Reverse electrodialysis powered greenhouse concept for water- and energy-self-sufficient agriculture," Applied Energy, Elsevier, vol. 187(C), pages 390-409.
    13. He, Wei & Wang, Yang & Shaheed, Mohammad Hasan, 2015. "Maximum power point tracking (MPPT) of a scale-up pressure retarded osmosis (PRO) osmotic power plant," Applied Energy, Elsevier, vol. 158(C), pages 584-596.
    14. Helfer, Fernanda & Lemckert, Charles, 2015. "The power of salinity gradients: An Australian example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1-16.
    15. Buonomenna, M.G. & Bae, J., 2015. "Membrane processes and renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1343-1398.
    16. Tan, Guangcai & Xu, Nan & Gao, Dingxue & Zhu, Xiuping, 2022. "Superabsorbent graphene oxide/carbon nanotube hybrid Poly(acrylic acid-co-acrylamide) hydrogels for efficient salinity gradient energy harvest," Energy, Elsevier, vol. 258(C).
    17. Andrea Zaffora & Andrea Culcasi & Luigi Gurreri & Alessandro Cosenza & Alessandro Tamburini & Monica Santamaria & Giorgio Micale, 2020. "Energy Harvesting by Waste Acid/Base Neutralization via Bipolar Membrane Reverse Electrodialysis," Energies, MDPI, vol. 13(20), pages 1-22, October.
    18. Zhao, Yanan & Li, Mingliang & Long, Rui & Liu, Zhichun & Liu, Wei, 2021. "Dynamic modeling and analysis of an advanced adsorption-based osmotic heat engines to harvest solar energy," Renewable Energy, Elsevier, vol. 175(C), pages 638-649.
    19. Łukasz Mika & Karol Sztekler & Tomasz Bujok & Piotr Boruta & Ewelina Radomska, 2024. "Seawater Treatment Technologies for Hydrogen Production by Electrolysis—A Review," Energies, MDPI, vol. 17(24), pages 1-33, December.
    20. Tong, Xin & Liu, Su & Yan, Junchen & Broesicke, Osvaldo A. & Chen, Yongsheng & Crittenden, John, 2020. "Thermolytic osmotic heat engine for low-grade heat harvesting: Thermodynamic investigation and potential application exploration," Applied Energy, Elsevier, vol. 259(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:155:y:2020:i:c:p:278-285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.