IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip3p2833-2841.html
   My bibliography  Save this article

Performance assessment of a standard radial turbine as turbo expander for an adapted solar concentration ORC

Author

Listed:
  • Deligant, Michael
  • Sauret, Emilie
  • Danel, Quentin
  • Bakir, Farid

Abstract

Organic Rankine cycles are one of the available solutions for converting low grade heat source into electrical power. However the development of plants tends to be very expansive due to the specific design of the expander. Usually, the input parameters for designing an ORC plant are the temperature and power of the heat and cold sources. They lead to the selection of a working fluid, pressures and temperatures. The expander is then designed based on the required operating parameters. Using standard turbine easily available on the market and with well known performances would allow to reduce the development and manufacturing cost. However, the ORC would have to be adapted to make the expander work in its best conditions. For a solar concentrated heat source, the temperature and power can be adapted by adjusting the concentration factor and the total area of the collector. In this paper, a given gas turbine is considered to be used as the expander of the ORC. Knowing the turbine's performances with air, the optimal operating parameters (pressure, temperature, flow rate and rotational speed) of the ORC with different fluids are sought based on similitude rules. The adaptation aims to maintain the same density evolution, inlet speed triangle and inlet Mach number with the working fluid as with air. The performance maps of the turbine are then computed with CFD simulations and showed a maximum isentropic efficiency close to the one with air, about 78%.

Suggested Citation

  • Deligant, Michael & Sauret, Emilie & Danel, Quentin & Bakir, Farid, 2020. "Performance assessment of a standard radial turbine as turbo expander for an adapted solar concentration ORC," Renewable Energy, Elsevier, vol. 147(P3), pages 2833-2841.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p3:p:2833-2841
    DOI: 10.1016/j.renene.2018.10.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118312035
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.10.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jaramillo, O.A. & Venegas-Reyes, E. & Aguilar, J.O. & Castrejón-García, R. & Sosa-Montemayor, F., 2013. "Parabolic trough concentrators for low enthalpy processes," Renewable Energy, Elsevier, vol. 60(C), pages 529-539.
    2. Borunda, Mónica & Jaramillo, O.A. & Dorantes, R. & Reyes, Alberto, 2016. "Organic Rankine Cycle coupling with a Parabolic Trough Solar Power Plant for cogeneration and industrial processes," Renewable Energy, Elsevier, vol. 86(C), pages 651-663.
    3. Da Lio, Luca & Manente, Giovanni & Lazzaretto, Andrea, 2017. "A mean-line model to predict the design efficiency of radial inflow turbines in organic Rankine cycle (ORC) systems," Applied Energy, Elsevier, vol. 205(C), pages 187-209.
    4. Freeman, James & Hellgardt, Klaus & Markides, Christos N., 2015. "An assessment of solar-powered organic Rankine cycle systems for combined heating and power in UK domestic applications," Applied Energy, Elsevier, vol. 138(C), pages 605-620.
    5. Kim, Do-Yeop & Kim, You-Taek, 2017. "Preliminary design and performance analysis of a radial inflow turbine for ocean thermal energy conversion," Renewable Energy, Elsevier, vol. 106(C), pages 255-263.
    6. White, Martin & Sayma, Abdulnaser I., 2016. "Improving the economy-of-scale of small organic rankine cycle systems through appropriate working fluid selection," Applied Energy, Elsevier, vol. 183(C), pages 1227-1239.
    7. Fiaschi, Daniele & Manfrida, Giampaolo & Maraschiello, Francesco, 2012. "Thermo-fluid dynamics preliminary design of turbo-expanders for ORC cycles," Applied Energy, Elsevier, vol. 97(C), pages 601-608.
    8. Sauret, Emilie & Gu, Yuantong, 2014. "Three-dimensional off-design numerical analysis of an organic Rankine cycle radial-inflow turbine," Applied Energy, Elsevier, vol. 135(C), pages 202-211.
    9. Al Jubori, Ayad M. & Al-Dadah, Raya K. & Mahmoud, Saad & Daabo, Ahmed, 2017. "Modelling and parametric analysis of small-scale axial and radial-outflow turbines for Organic Rankine Cycle applications," Applied Energy, Elsevier, vol. 190(C), pages 981-996.
    10. Freeman, James & Hellgardt, Klaus & Markides, Christos N., 2017. "Working fluid selection and electrical performance optimisation of a domestic solar-ORC combined heat and power system for year-round operation in the UK," Applied Energy, Elsevier, vol. 186(P3), pages 291-303.
    11. Zhu, Sipeng & Deng, Kangyao & Liu, Sheng, 2015. "Modeling and extrapolating mass flow characteristics of a radial turbocharger turbine," Energy, Elsevier, vol. 87(C), pages 628-637.
    12. Fiaschi, Daniele & Manfrida, Giampaolo & Maraschiello, Francesco, 2015. "Design and performance prediction of radial ORC turboexpanders," Applied Energy, Elsevier, vol. 138(C), pages 517-532.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Ningjian & Wang, Enhua & Wang, Wenli, 2023. "Design and analysis of a 1.5 kW single-stage partial-admission impulse turbine for low-grade energy utilization," Energy, Elsevier, vol. 268(C).
    2. Zhang, Xuefeng & Wang, Liwei & Zhu, Hanyu, 2022. "Investigation on a novel pumpless module driven by thermal energy and gravity and its application in an ORC system," Renewable Energy, Elsevier, vol. 195(C), pages 476-487.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zou, Aihong & Chassaing, Jean-Camille & Persky, Rodney & Gu, YuanTong & Sauret, Emilie, 2019. "Uncertainty Quantification in high-density fluid radial-inflow turbines for renewable low-grade temperature cycles," Applied Energy, Elsevier, vol. 241(C), pages 313-330.
    2. Witanowski, Łukasz & Ziółkowski, Paweł & Klonowicz, Piotr & Lampart, Piotr, 2023. "A hybrid approach to optimization of radial inflow turbine with principal component analysis," Energy, Elsevier, vol. 272(C).
    3. Peng Li & Zhonghe Han & Xiaoqiang Jia & Zhongkai Mei & Xu Han, 2018. "Analysis of the Effects of Blade Installation Angle and Blade Number on Radial-Inflow Turbine Stator Flow Performance," Energies, MDPI, vol. 11(9), pages 1-15, August.
    4. Al Jubori, Ayad M. & Al-Dadah, Raya K. & Mahmoud, Saad & Daabo, Ahmed, 2017. "Modelling and parametric analysis of small-scale axial and radial-outflow turbines for Organic Rankine Cycle applications," Applied Energy, Elsevier, vol. 190(C), pages 981-996.
    5. Da Lio, Luca & Manente, Giovanni & Lazzaretto, Andrea, 2017. "A mean-line model to predict the design efficiency of radial inflow turbines in organic Rankine cycle (ORC) systems," Applied Energy, Elsevier, vol. 205(C), pages 187-209.
    6. Jun-Seong Kim & Do-Yeop Kim, 2020. "Preliminary Design and Off-Design Analysis of a Radial Outflow Turbine for Organic Rankine Cycles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    7. Martin T. White & Abdulnaser I. Sayma, 2018. "A Generalised Assessment of Working Fluids and Radial Turbines for Non-Recuperated Subcritical Organic Rankine Cycles," Energies, MDPI, vol. 11(4), pages 1-26, March.
    8. Enhua Wang & Ningjian Peng, 2023. "A Review on the Preliminary Design of Axial and Radial Turbines for Small-Scale Organic Rankine Cycle," Energies, MDPI, vol. 16(8), pages 1-20, April.
    9. Zaniewski, Dawid & Klimaszewski, Piotr & Klonowicz, Piotr & Lampart, Piotr & Witanowski, Łukasz & Jędrzejewski, Łukasz & Suchocki, Tomasz & Antczak, Łukasz, 2021. "Performance of the honeycomb type sealings in organic vapour microturbines," Energy, Elsevier, vol. 226(C).
    10. Lorenzo Tocci & Tamas Pal & Ioannis Pesmazoglou & Benjamin Franchetti, 2017. "Small Scale Organic Rankine Cycle (ORC): A Techno-Economic Review," Energies, MDPI, vol. 10(4), pages 1-26, March.
    11. Zhang, Chengbin & Wu, Zhe & Wang, Jiadian & Ding, Ce & Gao, Tieyu & Chen, Yongping, 2023. "Thermodynamic performance of a radial-inflow turbine for ocean thermal energy conversion using ammonia," Renewable Energy, Elsevier, vol. 202(C), pages 907-920.
    12. Li, Xiaoming & Lv, Cui & Yang, Shaoqi & Li, Jian & Deng, Bicai & Li, Qing, 2019. "Preliminary design and performance analysis of a radial inflow turbine for a large-scale helium cryogenic system," Energy, Elsevier, vol. 167(C), pages 106-116.
    13. Loni, Reyhaneh & Mahian, Omid & Markides, Christos N. & Bellos, Evangelos & le Roux, Willem G. & Kasaeian, Ailbakhsh & Najafi, Gholamhassan & Rajaee, Fatemeh, 2021. "A review of solar-driven organic Rankine cycles: Recent challenges and future outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    15. Pantaleo, Antonio M. & Camporeale, Sergio M. & Miliozzi, Adio & Russo, Valeria & Shah, Nilay & Markides, Christos N., 2017. "Novel hybrid CSP-biomass CHP for flexible generation: Thermo-economic analysis and profitability assessment," Applied Energy, Elsevier, vol. 204(C), pages 994-1006.
    16. Fabio Fatigati & Diego Vittorini & Yaxiong Wang & Jian Song & Christos N. Markides & Roberto Cipollone, 2020. "Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery," Energies, MDPI, vol. 13(21), pages 1-23, November.
    17. Borunda, Mónica & Garduno-Ramirez, Raul & Jaramillo, O.A., 2019. "Optimal operation of a parabolic solar collector with twisted-tape insert by multi-objective genetic algorithms," Renewable Energy, Elsevier, vol. 143(C), pages 540-550.
    18. Oyewunmi, Oyeniyi A. & Kirmse, Christoph J.W. & Haslam, Andrew J. & Müller, Erich A. & Markides, Christos N., 2017. "Working-fluid selection and performance investigation of a two-phase single-reciprocating-piston heat-conversion engine," Applied Energy, Elsevier, vol. 186(P3), pages 376-395.
    19. Saghafifar, Mohammad & Gadalla, Mohamed, 2017. "Thermo-economic optimization of hybrid solar Maisotsenko bottoming cycles using heliostat field collector: Comparative analysis," Applied Energy, Elsevier, vol. 190(C), pages 686-702.
    20. Aziz, Faraz & Salim, Mohammad Saad & Kim, Man-Hoe, 2019. "Performance analysis of high temperature cascade organic Rankine cycle coupled with water heating system," Energy, Elsevier, vol. 170(C), pages 954-966.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p3:p:2833-2841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.