IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v242y2019icp1176-1188.html
   My bibliography  Save this article

Influence of the incident radiation on the energy performance of two small-scale solar Organic Rankine Cycle trigenerative systems: A simulation analysis

Author

Listed:
  • Villarini, Mauro
  • Tascioni, Roberto
  • Arteconi, Alessia
  • Cioccolanti, Luca

Abstract

In this paper, two innovative small-scale solar Organic Rankine Cycle (ORC) trigeneration plants are investigated and compared using a simulation analysis. In particular, the first plant (Plant 1) consists of a 146 m2 Compound Parabolic Collectors (CPC) solar field, a 3 m3 diathermic oil storage tank, a 3.5 kWe ORC plant and a 17 kWc absorption chiller, while the second plant (Plant 2) consists of a Linear Fresnel Reflectors (LFR) solar field of equal reflecting area, a phase change material storage tank equipped with reversible heat pipes, a 3.2 kWe ORC unit and the same 17 kWc absorption chiller as the former.

Suggested Citation

  • Villarini, Mauro & Tascioni, Roberto & Arteconi, Alessia & Cioccolanti, Luca, 2019. "Influence of the incident radiation on the energy performance of two small-scale solar Organic Rankine Cycle trigenerative systems: A simulation analysis," Applied Energy, Elsevier, vol. 242(C), pages 1176-1188.
  • Handle: RePEc:eee:appene:v:242:y:2019:i:c:p:1176-1188
    DOI: 10.1016/j.apenergy.2019.03.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919304751
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.03.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Freeman, James & Hellgardt, Klaus & Markides, Christos N., 2017. "Working fluid selection and electrical performance optimisation of a domestic solar-ORC combined heat and power system for year-round operation in the UK," Applied Energy, Elsevier, vol. 186(P3), pages 291-303.
    2. Pietzcker, Robert Carl & Stetter, Daniel & Manger, Susanne & Luderer, Gunnar, 2014. "Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power," Applied Energy, Elsevier, vol. 135(C), pages 704-720.
    3. Freeman, James & Hellgardt, Klaus & Markides, Christos N., 2015. "An assessment of solar-powered organic Rankine cycle systems for combined heating and power in UK domestic applications," Applied Energy, Elsevier, vol. 138(C), pages 605-620.
    4. José Miguel Maldonado & Margalida Fullana-Puig & Marc Martín & Aran Solé & Ángel G. Fernández & Alvaro De Gracia & Luisa F. Cabeza, 2018. "Phase Change Material Selection for Thermal Energy Storage at High Temperature Range between 210 °C and 270 °C," Energies, MDPI, vol. 11(4), pages 1-13, April.
    5. Mohammadi, Kasra & Goudarzi, Navid, 2018. "Association of direct normal irradiance with El Niño Southern Oscillation and its consequence on concentrated solar power production in the US Southwest," Applied Energy, Elsevier, vol. 212(C), pages 1126-1137.
    6. Jebasingh, V.K. & Herbert, G.M. Joselin, 2016. "A review of solar parabolic trough collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1085-1091.
    7. Ramos, Alba & Chatzopoulou, Maria Anna & Freeman, James & Markides, Christos N., 2018. "Optimisation of a high-efficiency solar-driven organic Rankine cycle for applications in the built environment," Applied Energy, Elsevier, vol. 228(C), pages 755-765.
    8. Manfrida, Giampaolo & Secchi, Riccardo & Stańczyk, Kamil, 2016. "Modelling and simulation of phase change material latent heat storages applied to a solar-powered Organic Rankine Cycle," Applied Energy, Elsevier, vol. 179(C), pages 378-388.
    9. Abbas, R. & Muñoz, J. & Martínez-Val, J.M., 2012. "Steady-state thermal analysis of an innovative receiver for linear Fresnel reflectors," Applied Energy, Elsevier, vol. 92(C), pages 503-515.
    10. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    11. Ghasemi, Hadi & Sheu, Elysia & Tizzanini, Alessio & Paci, Marco & Mitsos, Alexander, 2014. "Hybrid solar–geothermal power generation: Optimal retrofitting," Applied Energy, Elsevier, vol. 131(C), pages 158-170.
    12. Cioccolanti, Luca & Tascioni, Roberto & Arteconi, Alessia, 2018. "Mathematical modelling of operation modes and performance evaluation of an innovative small-scale concentrated solar organic Rankine cycle plant," Applied Energy, Elsevier, vol. 221(C), pages 464-476.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberto Tascioni & Alessia Arteconi & Luca Del Zotto & Luca Cioccolanti, 2020. "Fuzzy Logic Energy Management Strategy of a Multiple Latent Heat Thermal Storage in a Small-Scale Concentrated Solar Power Plant," Energies, MDPI, vol. 13(11), pages 1-16, May.
    2. Gheorghe Dumitrașcu & Michel Feidt & Ştefan Grigorean, 2021. "Finite Physical Dimensions Thermodynamics Analysis and Design of Closed Irreversible Cycles," Energies, MDPI, vol. 14(12), pages 1-19, June.
    3. Dominika Matuszewska, 2024. "Solar Organic Rankine Cycle (ORC) Systems: A Review of Technologies, Parameters, and Applications," Energies, MDPI, vol. 17(20), pages 1-26, October.
    4. Rodriguez-Pastor, D.A. & Becerra, J.A. & Chacartegui, R., 2023. "Adaptation of residential solar systems for domestic hot water (DHW) to hybrid organic Rankine Cycle (ORC) distributed generation," Energy, Elsevier, vol. 263(PD).
    5. Zhang, Yi-Fan & Li, Ming-Jia & Ren, Xiao & Duan, Xin-Yue & Wu, Chia-Jung & Xi, Huan & Feng, Yong-Qiang & Gong, Liang & Hung, Tzu-Chen, 2022. "Effect of heat source supplies on system behaviors of ORCs with different capacities: An experimental comparison between the 3 kW and 10 kW unit," Energy, Elsevier, vol. 254(PB).
    6. Tiwari, Deepak & Sherwani, Ahmad Faizan & Atheaya, Deepali & Kumar, Anil & Kumar, Nishant, 2020. "Thermodynamic analysis of Organic Rankine cycle driven by reversed absorber hybrid photovoltaic thermal compound parabolic concentrator system," Renewable Energy, Elsevier, vol. 147(P1), pages 2118-2127.
    7. Bai, Zhang & Yuan, Yu & Kong, Debin & Zhou, Shengdong & Li, Qi & Wang, Shuoshuo, 2023. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Off-design operation performance," Applied Energy, Elsevier, vol. 348(C).
    8. Parisa Heidarnejad & Hadi Genceli & Nasim Hashemian & Mustafa Asker & Mohammad Al-Rawi, 2024. "Biomass-Fueled Organic Rankine Cycles: State of the Art and Future Trends," Energies, MDPI, vol. 17(15), pages 1-30, August.
    9. Aramesh, M. & Shabani, B., 2020. "On the integration of phase change materials with evacuated tube solar thermal collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    10. Arteconi, Alessia & Del Zotto, Luca & Tascioni, Roberto & Cioccolanti, Luca, 2019. "Modelling system integration of a micro solar Organic Rankine Cycle plant into a residential building," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Roberto Tascioni & Luca Cioccolanti & Luca Del Zotto & Emanuele Habib, 2020. "Numerical Investigation of Pipelines Modeling in Small-Scale Concentrated Solar Combined Heat and Power Plants," Energies, MDPI, vol. 13(2), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arteconi, Alessia & Del Zotto, Luca & Tascioni, Roberto & Cioccolanti, Luca, 2019. "Modelling system integration of a micro solar Organic Rankine Cycle plant into a residential building," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Loni, Reyhaneh & Mahian, Omid & Markides, Christos N. & Bellos, Evangelos & le Roux, Willem G. & Kasaeian, Ailbakhsh & Najafi, Gholamhassan & Rajaee, Fatemeh, 2021. "A review of solar-driven organic Rankine cycles: Recent challenges and future outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Cioccolanti, Luca & Tascioni, Roberto & Arteconi, Alessia, 2018. "Mathematical modelling of operation modes and performance evaluation of an innovative small-scale concentrated solar organic Rankine cycle plant," Applied Energy, Elsevier, vol. 221(C), pages 464-476.
    4. Chatzopoulou, Maria Anna & Simpson, Michael & Sapin, Paul & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with piston expanders for medium-scale combined heat and power applications," Applied Energy, Elsevier, vol. 238(C), pages 1211-1236.
    5. Ruiqi Wang & Long Jiang & Zhiwei Ma & Abigail Gonzalez-Diaz & Yaodong Wang & Anthony Paul Roskilly, 2019. "Comparative Analysis of Small-Scale Organic Rankine Cycle Systems for Solar Energy Utilisation," Energies, MDPI, vol. 12(5), pages 1-22, March.
    6. Herrando, María & Ramos, Alba & Zabalza, Ignacio & Markides, Christos N., 2019. "A comprehensive assessment of alternative absorber-exchanger designs for hybrid PVT-water collectors," Applied Energy, Elsevier, vol. 235(C), pages 1583-1602.
    7. Li, Jing & Gao, Guangtao & Kutlu, Cagri & Liu, Keliang & Pei, Gang & Su, Yuehong & Ji, Jie & Riffat, Saffa, 2019. "A novel approach to thermal storage of direct steam generation solar power systems through two-step heat discharge," Applied Energy, Elsevier, vol. 236(C), pages 81-100.
    8. Wang, Kai & Pantaleo, Antonio M. & Herrando, María & Faccia, Michele & Pesmazoglou, Ioannis & Franchetti, Benjamin M. & Markides, Christos N., 2020. "Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms," Renewable Energy, Elsevier, vol. 159(C), pages 1047-1065.
    9. Pantaleo, Antonio M. & Camporeale, Sergio M. & Sorrentino, Arianna & Miliozzi, Adio & Shah, Nilay & Markides, Christos N., 2020. "Hybrid solar-biomass combined Brayton/organic Rankine-cycle plants integrated with thermal storage: Techno-economic feasibility in selected Mediterranean areas," Renewable Energy, Elsevier, vol. 147(P3), pages 2913-2931.
    10. Majumdar, Rudrodip & Singh, Suneet & Saha, Sandip K., 2018. "Quasi-steady state moving boundary reduced order model of two-phase flow for ORC refrigerant in solar-thermal heat exchanger," Renewable Energy, Elsevier, vol. 126(C), pages 830-843.
    11. Steven Lecompte & Oyeniyi A. Oyewunmi & Christos N. Markides & Marija Lazova & Alihan Kaya & Martijn Van den Broek & Michel De Paepe, 2017. "Case Study of an Organic Rankine Cycle (ORC) for Waste Heat Recovery from an Electric Arc Furnace (EAF)," Energies, MDPI, vol. 10(5), pages 1-16, May.
    12. Chatzopoulou, Maria Anna & Lecompte, Steven & Paepe, Michel De & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with different heat exchangers and volumetric expanders in waste heat recovery applications," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Emadi, Mohammad Ali & Chitgar, Nazanin & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2020. "Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery," Applied Energy, Elsevier, vol. 261(C).
    14. Roberto Tascioni & Alessia Arteconi & Luca Del Zotto & Luca Cioccolanti, 2020. "Fuzzy Logic Energy Management Strategy of a Multiple Latent Heat Thermal Storage in a Small-Scale Concentrated Solar Power Plant," Energies, MDPI, vol. 13(11), pages 1-16, May.
    15. Wang, Kai & Herrando, María & Pantaleo, Antonio M. & Markides, Christos N., 2019. "Technoeconomic assessments of hybrid photovoltaic-thermal vs. conventional solar-energy systems: Case studies in heat and power provision to sports centres," Applied Energy, Elsevier, vol. 254(C).
    16. White, M.T. & Oyewunmi, O.A. & Chatzopoulou, M.A. & Pantaleo, A.M. & Haslam, A.J. & Markides, C.N., 2018. "Computer-aided working-fluid design, thermodynamic optimisation and thermoeconomic assessment of ORC systems for waste-heat recovery," Energy, Elsevier, vol. 161(C), pages 1181-1198.
    17. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2015. "Energy and economic analysis of geothermal–solar trigeneration systems: A case study for a hotel building in Ischia," Applied Energy, Elsevier, vol. 138(C), pages 224-241.
    18. Campana, Claudio & Cioccolanti, Luca & Renzi, Massimiliano & Caresana, Flavio, 2019. "Experimental analysis of a small-scale scroll expander for low-temperature waste heat recovery in Organic Rankine Cycle," Energy, Elsevier, vol. 187(C).
    19. Guarracino, Ilaria & Freeman, James & Ramos, Alba & Kalogirou, Soteris A. & Ekins-Daukes, Nicholas J. & Markides, Christos N., 2019. "Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions," Applied Energy, Elsevier, vol. 240(C), pages 1014-1030.
    20. Ni, Jiaxin & Zhao, Li & Zhang, Zhengtao & Zhang, Ying & Zhang, Jianyuan & Deng, Shuai & Ma, Minglu, 2018. "Dynamic performance investigation of organic Rankine cycle driven by solar energy under cloudy condition," Energy, Elsevier, vol. 147(C), pages 122-141.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:242:y:2019:i:c:p:1176-1188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.