IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p861-d140013.html
   My bibliography  Save this article

Phase Change Material Selection for Thermal Energy Storage at High Temperature Range between 210 °C and 270 °C

Author

Listed:
  • José Miguel Maldonado

    (GREiA Research Group, INSPIRES Research Centre, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida, Spain)

  • Margalida Fullana-Puig

    (GREiA Research Group, INSPIRES Research Centre, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida, Spain
    CIRIAF—Interuniversity Research Centre on Pollution and Environment Mauro Felli, Via G. Duranti 63, 06125 Perugia, Italy)

  • Marc Martín

    (GREiA Research Group, INSPIRES Research Centre, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida, Spain)

  • Aran Solé

    (Department of Mechanical Engineering and Construction, Universitat Jaume I, Av. Vicent Sos Baynat, s/n, 12071 Castellón de la Plana, Spain)

  • Ángel G. Fernández

    (Energy Development Center, University of Antofagasta, Av. Universidad de Antofagasta, 02800 Antofagasta, Chile)

  • Alvaro De Gracia

    (GREiA Research Group, INSPIRES Research Centre, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida, Spain
    CIRIAF—Interuniversity Research Centre on Pollution and Environment Mauro Felli, Via G. Duranti 63, 06125 Perugia, Italy)

  • Luisa F. Cabeza

    (GREiA Research Group, INSPIRES Research Centre, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida, Spain)

Abstract

The improvement of thermal energy storage systems implemented in solar technologies increases not only their performance but also their dispatchability and competitiveness in the energy market. Latent heat thermal energy storage systems are one of those storing methods. Therefore, the need of finding the best materials for each application becomes an appealing research subject. The main goal of this paper is to find suitable and economically viable materials able to work as phase change material (PCM) within the temperature range of 210–270 °C and endure daily loading and unloading processes in a system with Fresnel collector and an organic Rankine cycle (ORC). Twenty-six materials have been tested and characterized in terms of their thermophysical conditions, thermal and cycling stability, and health hazard. Two materials out of the 26 candidates achieved the last stage of the selection process. However, one of the two finalists would require an inert working atmosphere, which would highly increase the cost for the real scale application. This leads to a unique suitable material, solar salt (40 wt % KNO 3 /60 wt % NaNO 3 ).

Suggested Citation

  • José Miguel Maldonado & Margalida Fullana-Puig & Marc Martín & Aran Solé & Ángel G. Fernández & Alvaro De Gracia & Luisa F. Cabeza, 2018. "Phase Change Material Selection for Thermal Energy Storage at High Temperature Range between 210 °C and 270 °C," Energies, MDPI, vol. 11(4), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:861-:d:140013
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/861/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/861/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ge, Haoshan & Li, Haiyan & Mei, Shengfu & Liu, Jing, 2013. "Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 331-346.
    2. Kenisarin, Murat M., 2010. "High-temperature phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 955-970, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberto Tascioni & Alessia Arteconi & Luca Del Zotto & Luca Cioccolanti, 2020. "Fuzzy Logic Energy Management Strategy of a Multiple Latent Heat Thermal Storage in a Small-Scale Concentrated Solar Power Plant," Energies, MDPI, vol. 13(11), pages 1-16, May.
    2. Villarini, Mauro & Tascioni, Roberto & Arteconi, Alessia & Cioccolanti, Luca, 2019. "Influence of the incident radiation on the energy performance of two small-scale solar Organic Rankine Cycle trigenerative systems: A simulation analysis," Applied Energy, Elsevier, vol. 242(C), pages 1176-1188.
    3. Naveed Hassan & Manickam Minakshi & Willey Yun Hsien Liew & Amun Amri & Zhong-Tao Jiang, 2023. "Thermal Characterization of Binary Calcium-Lithium Chloride Salts for Thermal Energy Storage at High Temperature," Energies, MDPI, vol. 16(12), pages 1-16, June.
    4. Shao, Xue-Feng & Yang, Sheng & Wang, Chao & Wang, Wu-Jun & Zeng, Yi & Fan, Li-Wu, 2020. "Screening of sugar alcohols and their binary eutectic mixtures as phase change materials for low-to-medium temperature thermal energy storage. (Ⅲ): Thermal endurance," Energy, Elsevier, vol. 209(C).
    5. Georg Scharinger-Urschitz & Heimo Walter & Markus Haider, 2019. "Heat Transfer in Latent High-Temperature Thermal Energy Storage Systems—Experimental Investigation," Energies, MDPI, vol. 12(7), pages 1-19, April.
    6. Stengler, Jana & Linder, Marc, 2020. "Thermal energy storage combined with a temperature boost: An underestimated feature of thermochemical systems," Applied Energy, Elsevier, vol. 262(C).
    7. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Xin Xiao & Gan Zhang & Yulong Ding & Dongsheng Wen, 2019. "Rheological Characteristics of Molten Salt Seeded with Al 2 O 3 Nanopowder and Graphene for Concentrated Solar Power," Energies, MDPI, vol. 12(3), pages 1-16, February.
    9. Arteconi, Alessia & Del Zotto, Luca & Tascioni, Roberto & Cioccolanti, Luca, 2019. "Modelling system integration of a micro solar Organic Rankine Cycle plant into a residential building," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Zhao, Y. & Zhao, C.Y. & Markides, C.N. & Wang, H. & Li, W., 2020. "Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review," Applied Energy, Elsevier, vol. 280(C).
    11. Patricia Royo & Luis Acevedo & Álvaro J. Arnal & Maryori Diaz-Ramírez & Tatiana García-Armingol & Victor J. Ferreira & Germán Ferreira & Ana M. López-Sabirón, 2021. "Decision Support System of Innovative High-Temperature Latent Heat Storage for Waste Heat Recovery in the Energy-Intensive Industry," Energies, MDPI, vol. 14(2), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Mohamed, Shamseldin A. & Al-Sulaiman, Fahad A. & Ibrahim, Nasiru I. & Zahir, Md. Hasan & Al-Ahmed, Amir & Saidur, R. & Yılbaş, B.S. & Sahin, A.Z., 2017. "A review on current status and challenges of inorganic phase change materials for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1072-1089.
    3. Jankowski, Nicholas R. & McCluskey, F. Patrick, 2014. "A review of phase change materials for vehicle component thermal buffering," Applied Energy, Elsevier, vol. 113(C), pages 1525-1561.
    4. Raud, Ralf & Cholette, Michael E. & Riahi, Soheila & Bruno, Frank & Saman, Wasim & Will, Geoffrey & Steinberg, Theodore A., 2017. "Design optimization method for tube and fin latent heat thermal energy storage systems," Energy, Elsevier, vol. 134(C), pages 585-594.
    5. Bell, S. & Steinberg, T. & Will, G., 2019. "Corrosion mechanisms in molten salt thermal energy storage for concentrating solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    6. Naveed Hassan & Manickam Minakshi & Willey Yun Hsien Liew & Amun Amri & Zhong-Tao Jiang, 2023. "Thermal Characterization of Binary Calcium-Lithium Chloride Salts for Thermal Energy Storage at High Temperature," Energies, MDPI, vol. 16(12), pages 1-16, June.
    7. Santhanam, S. & Heddrich, M.P. & Riedel, M. & Friedrich, K.A., 2017. "Theoretical and experimental study of Reversible Solid Oxide Cell (r-SOC) systems for energy storage," Energy, Elsevier, vol. 141(C), pages 202-214.
    8. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
    9. Vitale, F. & Rispoli, N. & Sorrentino, M. & Rosen, M.A. & Pianese, C., 2021. "On the use of dynamic programming for optimal energy management of grid-connected reversible solid oxide cell-based renewable microgrids," Energy, Elsevier, vol. 225(C).
    10. Balderrama Prieto, Silvino A. & Sabharwall, Piyush, 2024. "Technical and economic evaluation of heat transfer fluids for a TES system integrated to an advanced nuclear reactor," Applied Energy, Elsevier, vol. 360(C).
    11. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2019. "Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems," Applied Energy, Elsevier, vol. 238(C), pages 887-910.
    12. Michał Jurczyk & Tomasz Spietz & Agata Czardybon & Szymon Dobras & Karina Ignasiak & Łukasz Bartela & Wojciech Uchman & Jakub Ochmann, 2024. "Review of Thermal Energy Storage Materials for Application in Large-Scale Integrated Energy Systems—Methodology for Matching Heat Storage Solutions for Given Applications," Energies, MDPI, vol. 17(14), pages 1-28, July.
    13. Raud, Ralf & Jacob, Rhys & Bruno, Frank & Will, Geoffrey & Steinberg, Theodore A., 2017. "A critical review of eutectic salt property prediction for latent heat energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 936-944.
    14. Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
    15. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    16. Xu, H.J. & Zhao, C.Y., 2015. "Thermodynamic analysis and optimization of cascaded latent heat storage system for energy efficient utilization," Energy, Elsevier, vol. 90(P2), pages 1662-1673.
    17. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    18. Fernandes, D. & Pitié, F. & Cáceres, G. & Baeyens, J., 2012. "Thermal energy storage: “How previous findings determine current research priorities”," Energy, Elsevier, vol. 39(1), pages 246-257.
    19. Khor, J.O. & Sze, J.Y. & Li, Y. & Romagnoli, A., 2020. "Overcharging of a cascaded packed bed thermal energy storage: Effects and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    20. Fornarelli, F. & Camporeale, S.M. & Fortunato, B. & Torresi, M. & Oresta, P. & Magliocchetti, L. & Miliozzi, A. & Santo, G., 2016. "CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants," Applied Energy, Elsevier, vol. 164(C), pages 711-722.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:861-:d:140013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.