IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p1011-1018.html
   My bibliography  Save this article

Experimental investigation on heat transfer characteristics of various nanofluids in an indoor electric heater

Author

Listed:
  • Chen, Zhanxiu
  • Zheng, Dan
  • Wang, Jin
  • Chen, Lei
  • Sundén, Bengt

Abstract

Heat transfer characteristics of an electric heater were experimentally investigated by using various fluids in this paper, including Cu-EGW (a mixture of ethylene glycol and DI-water), Al2O3-EGW, Fe3O4-EGW nanofluids. A 4:6 mixture of ethylene glycol and deionized water was used as the base liquid. All these nanofluids were prepared by ultrasonic treatment, and nanoparticle mass concentration of samples varies from 0.5% to 2%. In addition, natural convective heat transfer of Fe3O4-EGW nanofluid in an electric heater was carried out by considering an effect of different magnetic fields. The results indicated that heat transfer performance of Cu-EGW nanofluid was significantly higher than the Al2O3-EGW and Fe3O4-EGW nanofluids, and the heating efficiency of the Cu-EGW nanofluid increased with the mass concentration of Cu particles. Compared with that of the base fluid, equilibrium temperature values of electric heaters filled with 2.0% Cu-EGW, 1.0% Al2O3-EGW and 1.0% Fe3O4-EGW nanofluids increase by 13.18%, 3.77% and 4.52%, respectively. It was also found that the magnetic field had a positive effect on the heat transfer enhancement of the Fe3O4-EGW nanofluid. In addition, for the 0.5% Fe3O4 nanofluid under a magnetic intensity of 100 mT, the equilibrium temperature on the middle fin increases by 14.68%.

Suggested Citation

  • Chen, Zhanxiu & Zheng, Dan & Wang, Jin & Chen, Lei & Sundén, Bengt, 2020. "Experimental investigation on heat transfer characteristics of various nanofluids in an indoor electric heater," Renewable Energy, Elsevier, vol. 147(P1), pages 1011-1018.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1011-1018
    DOI: 10.1016/j.renene.2019.09.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119313667
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Xinxin & Xu, Chao & Liu, Jian & Fang, Xiaoming & Zhang, Zhengguo, 2019. "A direct absorption solar collector based on a water-ethylene glycol based nanofluid with anti-freeze property and excellent dispersion stability," Renewable Energy, Elsevier, vol. 133(C), pages 760-769.
    2. Hassan, Ali & Wahab, Abdul & Qasim, Muhammad Arslan & Janjua, Muhammad Mansoor & Ali, Muhammad Aon & Ali, Hafiz Muhammad & Jadoon, Tufail Rehman & Ali, Ejaz & Raza, Ahsan & Javaid, Noshairwan, 2020. "Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system," Renewable Energy, Elsevier, vol. 145(C), pages 282-293.
    3. Loni, R. & Askari Asli-Ardeh, E. & Ghobadian, B. & Kasaeian, A.B. & Bellos, Evangelos, 2018. "Thermal performance comparison between Al2O3/oil and SiO2/oil nanofluids in cylindrical cavity receiver based on experimental study," Renewable Energy, Elsevier, vol. 129(PA), pages 652-665.
    4. Khodabandeh, Erfan & Safaei, Mohammad Reza & Akbari, Soheil & Akbari, Omid Ali & Alrashed, Abdullah A.A.A., 2018. "Application of nanofluid to improve the thermal performance of horizontal spiral coil utilized in solar ponds: Geometric study," Renewable Energy, Elsevier, vol. 122(C), pages 1-16.
    5. Zeiny, Aimen & Jin, Haichuan & Lin, Guiping & Song, Pengxiang & Wen, Dongsheng, 2018. "Solar evaporation via nanofluids: A comparative study," Renewable Energy, Elsevier, vol. 122(C), pages 443-454.
    6. Khosravi, Ali & Malekan, Mohammad & Assad, Mamdouh E.H., 2019. "Numerical analysis of magnetic field effects on the heat transfer enhancement in ferrofluids for a parabolic trough solar collector," Renewable Energy, Elsevier, vol. 134(C), pages 54-63.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiming Qiao & Hongjun Xiang & Genrong Cao & Zhibo Qiao & Qing’ao Lv & Xichao Yuan & Lei Chen, 2022. "Simulation Analysis of Emptying the Explosives in Projectiles with Electromagnetic Heating," Energies, MDPI, vol. 16(1), pages 1-12, December.
    2. Zhang, Tianyi & Chen, Lei & Wang, Jin, 2023. "Multi-objective optimization of elliptical tube fin heat exchangers based on neural networks and genetic algorithm," Energy, Elsevier, vol. 269(C).
    3. Yiming Li & Fujun Sun & Wenbin Shi & Xingan Liu & Tianlai Li, 2022. "Numerical Simulation of Ventilation Performance in Mushroom Solar Greenhouse Design," Energies, MDPI, vol. 15(16), pages 1-18, August.
    4. Shen, Chao & Lv, Guoquan & Wei, Shen & Zhang, Chunxiao & Ruan, Changyun, 2020. "Investigating the performance of a novel solar lighting/heating system using spectrum-sensitive nanofluids," Applied Energy, Elsevier, vol. 270(C).
    5. Peng Liu & Wei Liu & Kexin Gong & Chengjun Han & Hong Zhang & Zhucheng Sui & Renguo Hu, 2022. "Numerical Study on Particulate Fouling Characteristics of Flue with a Particulate Fouling Model Considering Deposition and Removal Mechanisms," Energies, MDPI, vol. 15(22), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bahrami, Mehrdad & Akbari, Mohammad & Bagherzadeh, Seyed Amin & Karimipour, Arash & Afrand, Masoud & Goodarzi, Marjan, 2019. "Develop 24 dissimilar ANNs by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: Measure MSEs between targets & ANN for Fe–CuO/Eg–Water nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 159-168.
    2. Gong, Jing-hu & Wang, Jun & Lund, Peter D. & Zhao, Dan-dan & Xu, Jing-wen & Jin, Yi-hao, 2021. "Comparative study of heat transfer enhancement using different fins in semi-circular absorber tube for large-aperture trough solar concentrator," Renewable Energy, Elsevier, vol. 169(C), pages 1229-1241.
    3. Jing-hu, Gong & Yong, Li & Jun, Wang & Lund, Peter, 2023. "Performance optimization of larger-aperture parabolic trough concentrator solar power station using multi-stage heating technology," Energy, Elsevier, vol. 268(C).
    4. Shahsavar, Amin & Jha, Prabhakar & Arici, Muslum & Kefayati, Gholamreza, 2021. "A comparative experimental investigation of energetic and exergetic performances of water/magnetite nanofluid-based photovoltaic/thermal system equipped with finned and unfinned collectors," Energy, Elsevier, vol. 220(C).
    5. Arnas Majumder & Amit Kumar & Roberto Innamorati & Costantino Carlo Mastino & Giancarlo Cappellini & Roberto Baccoli & Gianluca Gatto, 2023. "Cooling Methods for Standard and Floating PV Panels," Energies, MDPI, vol. 16(24), pages 1-28, December.
    6. Mahyari, Amirhossein Ansari & Karimipour, Arash & Afrand, Masoud, 2019. "Effects of dispersed added Graphene Oxide-Silicon Carbide nanoparticles to present a statistical formulation for the mixture thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 98-112.
    7. Shojaeizadeh, Ehsan & Veysi, Farzad & Habibi, Hossein & Goodarzi, Koorosh & Habibi, Mehrdad, 2021. "Thermal efficiency investigation of a ferrofluid-based cylindrical solar collector with a helical pipe receiver under the effect of magnetic field," Renewable Energy, Elsevier, vol. 176(C), pages 198-213.
    8. Li, Zhijing & Lei, Hui & Kan, Ankang & Xie, Huaqing & Yu, Wei, 2021. "Photothermal applications based on graphene and its derivatives: A state-of-the-art review," Energy, Elsevier, vol. 216(C).
    9. Jin, Haichuan & Lin, Guiping & Zeiny, Aimen & Bai, Lizhan & Wen, Dongsheng, 2019. "Nanoparticle-based solar vapor generation: An experimental and numerical study," Energy, Elsevier, vol. 178(C), pages 447-459.
    10. Li, Xinyi & Duan, Jitong & Simon, Terrence & Ma, Ting & Cui, Tianhong & Wang, Qiuwang, 2021. "Nonuniform metal foam design and pore-scale analysis of a tilted composite phase change material system for photovoltaics thermal management," Applied Energy, Elsevier, vol. 298(C).
    11. Xin Jin & Guiping Lin & Haichuan Jin & Zunru Fu & Haoyang Sun, 2021. "Experimental Research on the Selective Absorption of Solar Energy by Hybrid Nanofluids," Energies, MDPI, vol. 14(23), pages 1-18, December.
    12. Toghyani, S. & Afshari, E. & Baniasadi, E. & Shadloo, M.S., 2019. "Energy and exergy analyses of a nanofluid based solar cooling and hydrogen production combined system," Renewable Energy, Elsevier, vol. 141(C), pages 1013-1025.
    13. Tsogtbilegt Boldoo & Jeonggyun Ham & Eui Kim & Honghyun Cho, 2020. "Review of the Photothermal Energy Conversion Performance of Nanofluids, Their Applications, and Recent Advances," Energies, MDPI, vol. 13(21), pages 1-33, November.
    14. Yıldırım, Erdal & Yurddaş, Ali, 2021. "Assessments of thermal performance of hybrid and mono nanofluid U-tube solar collector system," Renewable Energy, Elsevier, vol. 171(C), pages 1079-1096.
    15. Zhang, Wei & Li, Zhenlin & Zhang, Canying & Lin, Yusheng & Zhu, Haitao & Meng, Zhaoguo & Wu, Daxiong, 2022. "Improvement of the efficiency of volumetric solar steam generation by enhanced solar harvesting and energy management," Renewable Energy, Elsevier, vol. 183(C), pages 820-829.
    16. Amir Hossein Arkian & Gholamhassan Najafi & Shiva Gorjian & Reyhaneh Loni & Evangelos Bellos & Talal Yusaf, 2019. "Performance Assessment of a Solar Dryer System Using Small Parabolic Dish and Alumina/Oil Nanofluid: Simulation and Experimental Study," Energies, MDPI, vol. 12(24), pages 1-22, December.
    17. Mohamed Omri & Muhammad Jamal & Shafqat Hussain & Lioua Kolsi & Chemseddine Maatki, 2022. "Conjugate Natural Convection of a Hybrid Nanofluid in a Cavity Filled with Porous and Non-Newtonian Layers: The Impact of the Power Law Index," Mathematics, MDPI, vol. 10(12), pages 1-20, June.
    18. Hemmat Esfe, Mohammad & Kamyab, Mohammad Hassan & Afrand, Masoud & Amiri, Mahmoud Kiannejad, 2018. "Using artificial neural network for investigating of concurrent effects of multi-walled carbon nanotubes and alumina nanoparticles on the viscosity of 10W-40 engine oil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 610-624.
    19. Zhou, Yuekuan, 2022. "Demand response flexibility with synergies on passive PCM walls, BIPVs, and active air-conditioning system in a subtropical climate," Renewable Energy, Elsevier, vol. 199(C), pages 204-225.
    20. Abu-Hamdeh, Nidal H. & Oztop, Hakan F. & Alnefaie, Khalid A. & Wae-hayee, Makatar, 2020. "Hydrothermal irreversibility analysis based on multi-criteria assessment in a modified spiral piping system utilized in solar ponds," Renewable Energy, Elsevier, vol. 162(C), pages 355-370.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1011-1018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.