IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v240y2025ics0960148124022717.html
   My bibliography  Save this article

Performance optimization of photovoltaic thermoelectric systems based on phase change materials

Author

Listed:
  • Lv, Song
  • Liu, Wenzhuo
  • Yang, Jiahao

Abstract

Photovoltaic-thermoelectric generator (PV-TEG) systems have received widespread research attention as a means to improve the efficiency and time of full spectrum solar energy utilization. However, the energy loss caused by heat dissipation in the shell structure is often forgotten, reduces the input energy density and affects the power generation efficiency. Therefore, this work constructed a centralized thermal photovoltaic-thermoelectric generator-phase change material (PV-TEG-PCM) hybrid system. Thermal insulation material is added around the TEG to collect heat and improve the input density of heat energy. The heat collection effect keeps more heat inside the system, allowing the PCM to absorb and store more heat, thus regulating the temperature of the system more effectively. Comparative experiments were carried out to study the performance of the system, and the results showed that the efficiency of the PV-TEG-PCM hybrid system was increased to 14.2 % at 1000 W/m2 irradiance. Compared with the independent photovoltaic system, the temperature is reduced by 2.4 °C and the maximum efficiency is increased by 1.7 %. Compared with the mixed system without insulation material, the addition of insulation material reduces the system temperature by 3.29 °C. The proposed hybrid power system can improve the energy density and reduce the system temperature, which provides an innovative scheme for high efficiency hybrid power system.

Suggested Citation

  • Lv, Song & Liu, Wenzhuo & Yang, Jiahao, 2025. "Performance optimization of photovoltaic thermoelectric systems based on phase change materials," Renewable Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022717
    DOI: 10.1016/j.renene.2024.122203
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124022717
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lv, Song & Yang, Jiahao & Ren, Juwen & Zhang, Bolong & Lai, Yin & Chang, Zhihao, 2023. "Research and numerical analysis on performance optimization of photovoltaic-thermoelectric system incorporated with phase change materials," Energy, Elsevier, vol. 263(PC).
    2. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2023. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 539-574.
    3. Luo, Zhenyu & Zhu, Na & Hu, Pingfang & Lei, Fei & Zhang, Yaxi, 2022. "Simulation study on performance of PV-PCM-TE system for year-round analysis," Renewable Energy, Elsevier, vol. 195(C), pages 263-273.
    4. Wen, Xin & Ji, Jie & Li, Zhaomeng & Song, Zhiying, 2023. "Performance assessment of the hybrid PV-MCHP-TE system integrated with PCM in all-day operation: A preliminary numerical investigation," Energy, Elsevier, vol. 278(PA).
    5. Hassan, Ali & Wahab, Abdul & Qasim, Muhammad Arslan & Janjua, Muhammad Mansoor & Ali, Muhammad Aon & Ali, Hafiz Muhammad & Jadoon, Tufail Rehman & Ali, Ejaz & Raza, Ahsan & Javaid, Noshairwan, 2020. "Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system," Renewable Energy, Elsevier, vol. 145(C), pages 282-293.
    6. Gao, Yuanzhi & Dai, Zhaofeng & Wu, Dongxu & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2022. "Transient performance assessment of a hybrid PV-TEG system integrated with PCM under non-uniform radiation conditions: A numerical investigation," Renewable Energy, Elsevier, vol. 198(C), pages 352-366.
    7. Zhou, Yi-Peng & Li, Ming-Jia & Yang, Wei-Wei & He, Ya-Ling, 2018. "The effect of the full-spectrum characteristics of nanostructure on the PV-TE hybrid system performances within multi-physics coupling process," Applied Energy, Elsevier, vol. 213(C), pages 169-178.
    8. Darkwa, J. & Calautit, J. & Du, D. & Kokogianakis, G., 2019. "A numerical and experimental analysis of an integrated TEG-PCM power enhancement system for photovoltaic cells," Applied Energy, Elsevier, vol. 248(C), pages 688-701.
    9. Hao, Daning & Qi, Lingfei & Tairab, Alaeldin M. & Ahmed, Ammar & Azam, Ali & Luo, Dabing & Pan, Yajia & Zhang, Zutao & Yan, Jinyue, 2022. "Solar energy harvesting technologies for PV self-powered applications: A comprehensive review," Renewable Energy, Elsevier, vol. 188(C), pages 678-697.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Jiahong & Gao, Yuanzhi & Zhang, Xiaosong, 2024. "Performance evaluation of photovoltaic-phase change material-thermoelectric system through parametric study," Energy, Elsevier, vol. 307(C).
    2. Wang, Yacheng & Xia, Guodong & Zhou, Wenbin & An, Ce, 2025. "Performance investigation of linear Fresnel concentrating photovoltaic systems with mini-channel heat sink using R141b/R245fa mixture enhanced by electric field," Renewable Energy, Elsevier, vol. 238(C).
    3. Ke, Wei & Ji, Jie & Zhang, Chengyan & Xie, Hao, 2023. "Field experimental test and performance analysis of a novel hybrid CdTe PV glass module integrated with phase change materials," Renewable Energy, Elsevier, vol. 217(C).
    4. Tyagi, Praveen Kumar & Kumar, Rajan, 2024. "Comprehensive performance assessment of photovoltaic/thermal system using MWCNT/water nanofluid and novel finned multi-block nano-enhanced phase change material-based thermal collector: Energy, exergy," Energy, Elsevier, vol. 312(C).
    5. Kang, Yong-Kwon & Lee, Soo-Jin & Kim, Seheon & Nam, Yujin & Jeong, Jae-Weon, 2025. "Performance analysis of a hybrid energy harvester incorporating a thermoelectric generator and phase-change material through annual experiments," Renewable Energy, Elsevier, vol. 242(C).
    6. Sohani, Ali & Cornaro, Cristina & Shahverdian, Mohammad Hassan & Hoseinzadeh, Siamak & Moser, David & Nastasi, Benedetto & Sayyaadi, Hoseyn & Astiaso Garcia, Davide, 2023. "Thermography and machine learning combination for comprehensive analysis of transient response of a photovoltaic module to water cooling," Renewable Energy, Elsevier, vol. 210(C), pages 451-461.
    7. Jesus Fernando Hinojosa & Saul Fernando Moreno & Victor Manuel Maytorena, 2023. "Low-Temperature Applications of Phase Change Materials for Energy Storage: A Descriptive Review," Energies, MDPI, vol. 16(7), pages 1-39, March.
    8. Moshwan, Raza & Shi, Xiao-Lei & Zhang, Min & Yue, Yicheng & Liu, Wei-Di & Li, Meng & Wang, Lijun & Liang, Daniel & Chen, Zhi-Gang, 2025. "Advances and challenges in hybrid photovoltaic-thermoelectric systems for renewable energy," Applied Energy, Elsevier, vol. 380(C).
    9. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Zhu, Liutao & Zhang, Jili & Xu, Guoying & Zhang, Xiaosong, 2023. "A passive evaporative cooling strategy to enhance the electricity production of hybrid PV-STEG system," Applied Energy, Elsevier, vol. 349(C).
    10. Li, Xinyi & Wang, Yifei & Yuan, Qibin & Bian, Qingfei & Simon, Terrence & Yang, Haibo & Wang, Qiuwang, 2024. "Thermal management of PV based on latent energy storage of composite phase change material: A system-level analysis with pore-scale model," Applied Energy, Elsevier, vol. 364(C).
    11. Karthikeyan Velmurugan & Rajvikram Madurai Elavarasan & Pham Van De & Vaithinathan Karthikeyan & Tulja Bhavani Korukonda & Joshuva Arockia Dhanraj & Kanchanok Emsaeng & Md. Shahariar Chowdhury & Kuaan, 2022. "A Review of Heat Batteries Based PV Module Cooling—Case Studies on Performance Enhancement of Large-Scale Solar PV System," Sustainability, MDPI, vol. 14(4), pages 1-65, February.
    12. Ji, Jiahong & Gao, Yuanzhi & Zhang, Xiaosong, 2025. "A comparative study on the water treatment effects of different advanced oxidation technologies in a water treatment system based on double-sided photovoltaic-thermoelectric generators," Renewable Energy, Elsevier, vol. 242(C).
    13. Wen, Xin & Ji, Jie & Li, Zhaomeng & Song, Zhiying & Yao, Tingting, 2023. "Performance characterization of a PV/T system employing micro-channel heat pipes and thermoelectric generators: An experimental and numerical study," Energy, Elsevier, vol. 264(C).
    14. Khoshnazm, Mohammad Javad & Marzban, Ali & Azimi, Neda, 2023. "Performance enhancement of photovoltaic panels integrated with thermoelectric generators and phase change materials: Optimization and analysis of thermoelectric arrangement," Energy, Elsevier, vol. 267(C).
    15. Tomasz Trawiński & Janusz Kotowicz, 2025. "Photovoltaic Power System with Electrochemical and Hydrogen Storage for Energy Independence in Student Dormitories," Energies, MDPI, vol. 18(7), pages 1-19, March.
    16. Wang, Yacheng & Xia, Guodong & Zhou, Wenbin & Zhao, Shuai & Zhao, Pengsheng, 2024. "Exergetic and environment assessment of linear fresnel concentrating photovoltaic systems integrated with a porous-wall mini-channel heat sink: Outdoor experimental tests," Energy, Elsevier, vol. 306(C).
    17. Yang, Yurong & Wang, Shixue & Zhu, Yu, 2020. "Evaluation method for assessing heat transfer enhancement effect on performance improvement of thermoelectric generator systems," Applied Energy, Elsevier, vol. 263(C).
    18. He, Y. & Tao, Y.B. & Ye, H., 2023. "Periodic energy transmission and regulation of photovoltaic-phase change material-thermoelectric coupled system under space conditions," Energy, Elsevier, vol. 263(PC).
    19. Muhammad Nazri Rejab & Omar Mohd Faizan Marwah & Muhammad Akmal Johar & Mohamed Najib Ribuan, 2022. "Dual-Level Voltage Bipolar Thermal Energy Harvesting System from Solar Radiation in Malaysia," Sustainability, MDPI, vol. 14(19), pages 1-25, September.
    20. He, Y. & Tao, Y.B. & Zhao, C.Y. & Yu, X.K., 2022. "Structure parameter analysis and optimization of photovoltaic-phase change material-thermoelectric coupling system under space conditions," Renewable Energy, Elsevier, vol. 200(C), pages 320-333.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.