IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v242y2025ics0960148125001260.html
   My bibliography  Save this article

Performance analysis of a hybrid energy harvester incorporating a thermoelectric generator and phase-change material through annual experiments

Author

Listed:
  • Kang, Yong-Kwon
  • Lee, Soo-Jin
  • Kim, Seheon
  • Nam, Yujin
  • Jeong, Jae-Weon

Abstract

Energy harvesting using thermoelectric generators (TEGs) leverages the Seebeck effect to convert temperature differences into electricity. As zero-energy buildings (ZEBs) demand efficient energy use, integrating TEGs with building-integrated photovoltaics (BIPVs) offers a passive means to enhance solar panel efficiency by utilizing waste heat. Hybrid energy harvesters (HEHs) incorporating phase-change materials (PCMs) further stabilize thermal environments, improving TEG performance. This study demonstrated that the HEH system increased annual electricity generation by 4.38 %, producing 133.4 kWh/m2 compared to 127.8 kWh/m2 for conventional BIPVs. TEGs contributed 2.26 kWh/m2, or 1.7 % of the additional energy harvested. Seasonal experiments showed up to 14.3 % efficiency improvement in summer, with surface temperatures reduced by 10 °C. These findings highlight the HEH system's capability to enhance energy efficiency and address real-world challenges in sustainable building applications.

Suggested Citation

  • Kang, Yong-Kwon & Lee, Soo-Jin & Kim, Seheon & Nam, Yujin & Jeong, Jae-Weon, 2025. "Performance analysis of a hybrid energy harvester incorporating a thermoelectric generator and phase-change material through annual experiments," Renewable Energy, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:renene:v:242:y:2025:i:c:s0960148125001260
    DOI: 10.1016/j.renene.2025.122464
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125001260
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122464?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yong-Kwon Kang & Jaewon Joung & Minseong Kim & Hyun-Hwa Lee & Jae-Weon Jeong, 2022. "Numerical Analysis of a TEG and mPCM Enhancement System for BIPVs Using CFD," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    2. Karami Lakeh, Hossein & Kaatuzian, Hassan & Hosseini, Reza, 2019. "A parametrical study on photo-electro-thermal performance of an integrated thermoelectric-photovoltaic cell," Renewable Energy, Elsevier, vol. 138(C), pages 542-550.
    3. Ko, Jinyoung & Jeong, Jae-Weon, 2021. "Annual performance evaluation of thermoelectric generator-assisted building-integrated photovoltaic system with phase change material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Huq, M. & Jasi, A.M. & Poure, P. & Jovanovic, S. & Revol, I. & Lenoir, B., 2024. "Critical analysis of optimized energy harvesting at small-scale by thermally coupled photovoltaic-thermoelectric systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    5. Luo, Zhenyu & Zhu, Na & Hu, Pingfang & Lei, Fei & Zhang, Yaxi, 2022. "Simulation study on performance of PV-PCM-TE system for year-round analysis," Renewable Energy, Elsevier, vol. 195(C), pages 263-273.
    6. Gao, Yuanzhi & Dai, Zhaofeng & Wu, Dongxu & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2022. "Transient performance assessment of a hybrid PV-TEG system integrated with PCM under non-uniform radiation conditions: A numerical investigation," Renewable Energy, Elsevier, vol. 198(C), pages 352-366.
    7. Huen, Priscilla & Daoud, Walid A., 2017. "Advances in hybrid solar photovoltaic and thermoelectric generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1295-1302.
    8. Hansol Lim & Seong-Yong Cheon & Jae-Weon Jeong, 2018. "Empirical Analysis for the Heat Exchange Effectiveness of a Thermoelectric Liquid Cooling and Heating Unit," Energies, MDPI, vol. 11(3), pages 1-14, March.
    9. Jinlong Chen & Kewen Li & Changwei Liu & Mao Li & Youchang Lv & Lin Jia & Shanshan Jiang, 2017. "Enhanced Efficiency of Thermoelectric Generator by Optimizing Mechanical and Electrical Structures," Energies, MDPI, vol. 10(9), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yacheng & Xia, Guodong & Zhou, Wenbin & An, Ce, 2025. "Performance investigation of linear Fresnel concentrating photovoltaic systems with mini-channel heat sink using R141b/R245fa mixture enhanced by electric field," Renewable Energy, Elsevier, vol. 238(C).
    2. Lv, Song & Liu, Wenzhuo & Yang, Jiahao, 2025. "Performance optimization of photovoltaic thermoelectric systems based on phase change materials," Renewable Energy, Elsevier, vol. 240(C).
    3. Ke, Wei & Ji, Jie & Zhang, Chengyan & Xie, Hao, 2023. "Field experimental test and performance analysis of a novel hybrid CdTe PV glass module integrated with phase change materials," Renewable Energy, Elsevier, vol. 217(C).
    4. Sohani, Ali & Cornaro, Cristina & Shahverdian, Mohammad Hassan & Hoseinzadeh, Siamak & Moser, David & Nastasi, Benedetto & Sayyaadi, Hoseyn & Astiaso Garcia, Davide, 2023. "Thermography and machine learning combination for comprehensive analysis of transient response of a photovoltaic module to water cooling," Renewable Energy, Elsevier, vol. 210(C), pages 451-461.
    5. Kang, Yong-Kwon & Joung, Jaewon & Kim, Minseong & Jeong, Jae-Weon, 2023. "Energy impact of heat pipe-assisted microencapsulated phase change material heat sink for photovoltaic and thermoelectric generator hybrid panel," Renewable Energy, Elsevier, vol. 207(C), pages 298-308.
    6. Gao, Yuanzhi & Dai, Zhaofeng & Wu, Dongxu & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2022. "Transient performance assessment of a hybrid PV-TEG system integrated with PCM under non-uniform radiation conditions: A numerical investigation," Renewable Energy, Elsevier, vol. 198(C), pages 352-366.
    7. Moshwan, Raza & Shi, Xiao-Lei & Zhang, Min & Yue, Yicheng & Liu, Wei-Di & Li, Meng & Wang, Lijun & Liang, Daniel & Chen, Zhi-Gang, 2025. "Advances and challenges in hybrid photovoltaic-thermoelectric systems for renewable energy," Applied Energy, Elsevier, vol. 380(C).
    8. Shittu, Samson & Li, Guiqiang & Akhlaghi, Yousef Golizadeh & Ma, Xiaoli & Zhao, Xudong & Ayodele, Emmanuel, 2019. "Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 24-54.
    9. Wen, Xin & Ji, Jie & Li, Zhaomeng & Song, Zhiying & Yao, Tingting, 2023. "Performance characterization of a PV/T system employing micro-channel heat pipes and thermoelectric generators: An experimental and numerical study," Energy, Elsevier, vol. 264(C).
    10. Ravi Anant Kishore & Roop L. Mahajan & Shashank Priya, 2018. "Combinatory Finite Element and Artificial Neural Network Model for Predicting Performance of Thermoelectric Generator," Energies, MDPI, vol. 11(9), pages 1-17, August.
    11. Ko, Jinyoung & Cheon, Seong-Yong & Kang, Yong-Kwon & Jeong, Jae-Weon, 2022. "Design of a thermoelectric generator-assisted energy harvesting block considering melting temperature of phase change materials," Renewable Energy, Elsevier, vol. 193(C), pages 89-112.
    12. Wang, Yacheng & Xia, Guodong & Zhou, Wenbin & Zhao, Shuai & Zhao, Pengsheng, 2024. "Exergetic and environment assessment of linear fresnel concentrating photovoltaic systems integrated with a porous-wall mini-channel heat sink: Outdoor experimental tests," Energy, Elsevier, vol. 306(C).
    13. He, Y. & Tao, Y.B. & Zhao, C.Y. & Yu, X.K., 2022. "Structure parameter analysis and optimization of photovoltaic-phase change material-thermoelectric coupling system under space conditions," Renewable Energy, Elsevier, vol. 200(C), pages 320-333.
    14. Sarabi, Mohammad & Hekmat, Mohamad Hamed, 2024. "An experimental study on performance improvement of concentrated photovoltaic (CPV) systems using phase change materials (PCMs)," Renewable Energy, Elsevier, vol. 236(C).
    15. Xuan, Zhiwei & Ge, Minghui & Zhao, Chenyang & Li, Yanzhe & Wang, Shixue & Zhao, Yulong, 2024. "Effect of nonuniform solar radiation on the performance of solar thermoelectric generators," Energy, Elsevier, vol. 290(C).
    16. Sharifzadeh, Esmail & Rahimi, Masoud & Azimi, Neda & Abolhasani, Mahdieh, 2024. "Thermal management of photovoltaic panels using phase change materials and hierarchical ZnO/expanded graphite nanofillers," Energy, Elsevier, vol. 306(C).
    17. Li, Guiqiang & Shittu, Samson & zhou, Kai & Zhao, Xudong & Ma, Xiaoli, 2019. "Preliminary experiment on a novel photovoltaic-thermoelectric system in summer," Energy, Elsevier, vol. 188(C).
    18. Sang-Bing Tsai & Jie Zhou & Yang Gao & Jiangtao Wang & Guodong Li & Yuxiang Zheng & Peng Ren & Wei Xu, 2017. "Combining FMEA with DEMATEL models to solve production process problems," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-15, August.
    19. Martí Comamala & Ivan Ruiz Cózar & Albert Massaguer & Eduard Massaguer & Toni Pujol, 2018. "Effects of Design Parameters on Fuel Economy and Output Power in an Automotive Thermoelectric Generator," Energies, MDPI, vol. 11(12), pages 1-28, November.
    20. Li, Yantong & Liu, Chang & Liang, Junhan & Yin, Huibin, 2025. "Parametric studies and structural optimization of a PCM tank integrated with CO2 heat pumps," Renewable Energy, Elsevier, vol. 238(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:242:y:2025:i:c:s0960148125001260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.