IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v140y2019icp264-273.html
   My bibliography  Save this article

Stability and photo-thermal conversion performance of binary nanofluids for solar absorption refrigeration systems

Author

Listed:
  • Nourafkan, E.
  • Asachi, M.
  • Jin, H.
  • Wen, D.
  • Ahmed, W.

Abstract

The photo-thermal conversion characteristics of a long-term stable binary nanofluid (i.e., nanoparticles in 50 wt% lithium bromide-50 wt% water) were investigated in this work. The stability of the binary nanofluid against the agglomeration and sedimentation process was evaluated by a high-speed centrifuge analyzer and transmission electron microscopy. The photo-thermal conversion efficiency of the nanofluid was also studied using a solar simulator. Experimental results indicated that the use of binary nanofluid could significantly increase the light trapping efficiency and, therefore, the bulk temperature, which in turn could increase the evaporation rate due to surface localized heat generation. The experimental results showed the increase of 4.2 and 4.9% solar radiative energy in the form of sensible heat after the addition of 64 and 321 mg/L iron oxide NPs to the pure water, respectively. The enhancement percent was 4.9% and 11.9% for latent heat efficiency in the presence of 64 and 321 mg/L iron oxide NPs, respectively. Possessing both high stability and excellent photo-thermal conversion rate, rod shape iron oxide nanoparticle is suggested to be a potential candidate used for the solar absorption refrigeration systems.

Suggested Citation

  • Nourafkan, E. & Asachi, M. & Jin, H. & Wen, D. & Ahmed, W., 2019. "Stability and photo-thermal conversion performance of binary nanofluids for solar absorption refrigeration systems," Renewable Energy, Elsevier, vol. 140(C), pages 264-273.
  • Handle: RePEc:eee:renene:v:140:y:2019:i:c:p:264-273
    DOI: 10.1016/j.renene.2019.01.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119300941
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.01.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeiny, Aimen & Jin, Haichuan & Lin, Guiping & Song, Pengxiang & Wen, Dongsheng, 2018. "Solar evaporation via nanofluids: A comparative study," Renewable Energy, Elsevier, vol. 122(C), pages 443-454.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Kongxiang & He, Yan & Kan, Ankang & Yu, Wei & Wang, Debing & Zhang, Liyie & Zhu, Guihua & Xie, Huaqing & She, Xiaohui, 2019. "Significant photothermal conversion enhancement of nanofluids induced by Rayleigh-Bénard convection for direct absorption solar collectors," Applied Energy, Elsevier, vol. 254(C).
    2. Wang, Kongxiang & He, Yan & Liu, Pengyu & Kan, Ankang & Zheng, Zhiheng & Wang, Lingling & Xie, Huaqing & Yu, Wei, 2020. "Highly-efficient nanofluid-based direct absorption solar collector enhanced by reverse-irradiation for medium temperature applications," Renewable Energy, Elsevier, vol. 159(C), pages 652-662.
    3. Zhang, Wei & Li, Zhenlin & Zhang, Canying & Lin, Yusheng & Zhu, Haitao & Meng, Zhaoguo & Wu, Daxiong, 2022. "Improvement of the efficiency of volumetric solar steam generation by enhanced solar harvesting and energy management," Renewable Energy, Elsevier, vol. 183(C), pages 820-829.
    4. Tsogtbilegt Boldoo & Jeonggyun Ham & Eui Kim & Honghyun Cho, 2020. "Review of the Photothermal Energy Conversion Performance of Nanofluids, Their Applications, and Recent Advances," Energies, MDPI, vol. 13(21), pages 1-33, November.
    5. Sui, Zengguang & Zhai, Chong & Wu, Wei, 2022. "Parametric and comparative study on enhanced microchannel membrane-based absorber structures for compact absorption refrigeration," Renewable Energy, Elsevier, vol. 187(C), pages 109-122.
    6. Nižetić, Sandro & Jurčević, Mišo & Arıcı, Müslüm & Arasu, A. Valan & Xie, Gongnan, 2020. "Nano-enhanced phase change materials and fluids in energy applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Haichuan & Lin, Guiping & Zeiny, Aimen & Bai, Lizhan & Wen, Dongsheng, 2019. "Nanoparticle-based solar vapor generation: An experimental and numerical study," Energy, Elsevier, vol. 178(C), pages 447-459.
    2. Chen, Zhanxiu & Zheng, Dan & Wang, Jin & Chen, Lei & Sundén, Bengt, 2020. "Experimental investigation on heat transfer characteristics of various nanofluids in an indoor electric heater," Renewable Energy, Elsevier, vol. 147(P1), pages 1011-1018.
    3. Xin Jin & Guiping Lin & Haichuan Jin & Zunru Fu & Haoyang Sun, 2021. "Experimental Research on the Selective Absorption of Solar Energy by Hybrid Nanofluids," Energies, MDPI, vol. 14(23), pages 1-18, December.
    4. Tsogtbilegt Boldoo & Jeonggyun Ham & Eui Kim & Honghyun Cho, 2020. "Review of the Photothermal Energy Conversion Performance of Nanofluids, Their Applications, and Recent Advances," Energies, MDPI, vol. 13(21), pages 1-33, November.
    5. Zhang, Wei & Li, Zhenlin & Zhang, Canying & Lin, Yusheng & Zhu, Haitao & Meng, Zhaoguo & Wu, Daxiong, 2022. "Improvement of the efficiency of volumetric solar steam generation by enhanced solar harvesting and energy management," Renewable Energy, Elsevier, vol. 183(C), pages 820-829.
    6. Baby-Jean Robert Mungyeko Bisulandu & Rami Mansouri & Adrian Ilinca, 2023. "Diffusion Absorption Refrigeration Systems: An Overview of Thermal Mechanisms and Models," Energies, MDPI, vol. 16(9), pages 1-36, April.
    7. Ghafurian, Mohammad Mustafa & Niazmand, Hamid & Ebrahimnia-Bajestan, Ehsan & Taylor, Robert A., 2020. "Wood surface treatment techniques for enhanced solar steam generation," Renewable Energy, Elsevier, vol. 146(C), pages 2308-2315.
    8. Vallejo, Javier P. & Mercatelli, Luca & Martina, Maria Raffaella & Di Rosa, Daniele & Dell’Oro, Aldo & Lugo, Luis & Sani, Elisa, 2019. "Comparative study of different functionalized graphene-nanoplatelet aqueous nanofluids for solar energy applications," Renewable Energy, Elsevier, vol. 141(C), pages 791-801.
    9. Jin, Xin & Lin, Guiping & Zeiny, Aimen & Jin, Haichuan & Bai, Lizhan & Wen, Dongsheng, 2019. "Solar photothermal conversion characteristics of hybrid nanofluids: An experimental and numerical study," Renewable Energy, Elsevier, vol. 141(C), pages 937-949.
    10. Xin Jin & Guiping Lin & Haichuan Jin, 2021. "Experimental Investigations on Steam Generation in Nanofluids under Concentrated Solar Radiation," Energies, MDPI, vol. 14(13), pages 1-18, July.
    11. Muzamil Hussain & Syed Khawar Hussain Shah & Uzair Sajjad & Naseem Abbas & Ahsan Ali, 2022. "Recent Developments in Optical and Thermal Performance of Direct Absorption Solar Collectors," Energies, MDPI, vol. 15(19), pages 1-23, September.
    12. Akkala, Siva Ram & Kaviti, Ajay Kumar & ArunKumar, T. & Sikarwar, Vineet Singh, 2021. "Progress on suspended nanostructured engineering materials powered solar distillation- a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:140:y:2019:i:c:p:264-273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.