IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v140y2019icp203-211.html
   My bibliography  Save this article

Molecular arrangement in diesel/biodiesel blends: A Molecular Dynamics simulation analysis

Author

Listed:
  • Pires de Oliveira, Ivan
  • Caires, Anderson Rodrigues Lima

Abstract

Biodiesel is an important biofuel which has attracted attention because it can partially or totally replace petrodiesel fuel. Based on environmental, economic and social issues, government policy in many countries has mandated the addition of biodiesel to petrodiesel fuel, promoting the use of diesel/biodiesel blends. In this context, we evaluated the molecular interactions between native diesel molecules (n-paraffins, isoparaffins, naphthenes, aromatics, and heteroatomics) and four different methyl esters (from stearic acid, oleic acid, linoleic acid and linolenic acid), the most representative biodiesel molecules. We applied Molecular Dynamic simulations to obtain a detailed picture of the interactions and to quantitatively compute the accumulation of diesel molecules around the methyl esters by distribution functions. The results revealed that the diesel molecules accumulated around the fatty acid methyl esters at a distance of about 2.2 Å due to the non-polar interactions as well as at approximately 1.8 Å as a result of the hydrogen bonds formed between carbazole and esters. The data also demonstrated that the ester molecules diffuse into the blends less than the diesel molecules. In summary, the present investigation contributes to the fundamental understanding of the interactions between biodiesel and diesel molecules, revealing the arrangement and behavior of the diesel and biodiesel molecules in the diesel/biodiesel fuel blend.

Suggested Citation

  • Pires de Oliveira, Ivan & Caires, Anderson Rodrigues Lima, 2019. "Molecular arrangement in diesel/biodiesel blends: A Molecular Dynamics simulation analysis," Renewable Energy, Elsevier, vol. 140(C), pages 203-211.
  • Handle: RePEc:eee:renene:v:140:y:2019:i:c:p:203-211
    DOI: 10.1016/j.renene.2019.03.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119303660
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.03.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carraretto, C. & Macor, A. & Mirandola, A. & Stoppato, A. & Tonon, S., 2004. "Biodiesel as alternative fuel: Experimental analysis and energetic evaluations," Energy, Elsevier, vol. 29(12), pages 2195-2211.
    2. Alptekin, Ertan & Canakci, Mustafa, 2008. "Determination of the density and the viscosities of biodiesel–diesel fuel blends," Renewable Energy, Elsevier, vol. 33(12), pages 2623-2630.
    3. Janaun, Jidon & Ellis, Naoko, 2010. "Perspectives on biodiesel as a sustainable fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1312-1320, May.
    4. Sangeeta, & Moka, Sudheshna & Pande, Maneesha & Rani, Monika & Gakhar, Ruchi & Sharma, Madhur & Rani, Jyoti & Bhaskarwar, Ashok N., 2014. "Alternative fuels: An overview of current trends and scope for future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 697-712.
    5. Adewale, Peter & Dumont, Marie-Josée & Ngadi, Michael, 2015. "Recent trends of biodiesel production from animal fat wastes and associated production techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 574-588.
    6. Gülşen, Ece & Olivetti, Elsa & Freire, Fausto & Dias, Luis & Kirchain, Randolph, 2014. "Impact of feedstock diversification on the cost-effectiveness of biodiesel," Applied Energy, Elsevier, vol. 126(C), pages 281-296.
    7. Holbrook, Gabriel P. & Davidson, Zachary & Tatara, Robert A. & Ziemer, Norbert L. & Rosentrater, Kurt A. & Scott Grayburn, W., 2014. "Use of the microalga Monoraphidium sp. grown in wastewater as a feedstock for biodiesel: Cultivation and fuel characteristics," Applied Energy, Elsevier, vol. 131(C), pages 386-393.
    8. Shahir, S.A. & Masjuki, H.H. & Kalam, M.A. & Imran, A. & Ashraful, A.M., 2015. "Performance and emission assessment of diesel–biodiesel–ethanol/bioethanol blend as a fuel in diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 62-78.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Passos, Wilson E. & Oliveira, Ivan P. & Michels, Flávio S. & Trindade, Magno A.G. & Falcão, Evaristo A. & Marangoni, Bruno S. & Oliveira, Samuel L. & Caires, Anderson R.L., 2021. "Quantification of water in bioethanol using rhodamine B as an efficient molecular optical probe," Renewable Energy, Elsevier, vol. 165(P2), pages 42-51.
    2. Liu, Xiangyang & Wang, Tao & Chu, Jianchun & He, Maogang & Li, Qibin & Zhang, Ying, 2020. "Understanding lignin gasification in supercritical water using reactive molecular dynamics simulations," Renewable Energy, Elsevier, vol. 161(C), pages 858-866.
    3. Musyaroh, & Wijayanti, Widya & Sasongko, Mega Nur & Winarto,, 2023. "The role of limonene in the branching of straight chains in low-octane hydrocarbons," Renewable Energy, Elsevier, vol. 204(C), pages 421-431.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zaharin, M.S.M. & Abdullah, N.R. & Najafi, G. & Sharudin, H. & Yusaf, T., 2017. "Effects of physicochemical properties of biodiesel fuel blends with alcohol on diesel engine performance and exhaust emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 475-493.
    2. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
    3. Obed M. Ali & Talal Yusaf & Rizalman Mamat & Nik R. Abdullah & Abdul Adam Abdullah, 2014. "Influence of Chemical Blends on Palm Oil Methyl Esters’ Cold Flow Properties and Fuel Characteristics," Energies, MDPI, vol. 7(7), pages 1-17, July.
    4. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "Production of biodiesel using high free fatty acid feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3275-3285.
    5. Palash, S.M. & Kalam, M.A. & Masjuki, H.H. & Masum, B.M. & Rizwanul Fattah, I.M. & Mofijur, M., 2013. "Impacts of biodiesel combustion on NOx emissions and their reduction approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 473-490.
    6. Belachew Cekene Tesfa & Rakesh Mishra & Aliyu M. Aliyu, 2021. "Effect of Biodiesel Blends on the Transient Performance of Compression Ignition Engines," Energies, MDPI, vol. 14(17), pages 1-21, August.
    7. Wan Ghazali, Wan Nor Maawa & Mamat, Rizalman & Masjuki, H.H. & Najafi, Gholamhassan, 2015. "Effects of biodiesel from different feedstocks on engine performance and emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 585-602.
    8. Mohd Fadzli Hamid & Yew Heng Teoh & Mohamad Yusof Idroas & Mazlan Mohamed & Shukriwani Sa’ad & Sharzali Che Mat & Muhammad Khalil Abdullah & Thanh Danh Le & Heoy Geok How & Huu Tho Nguyen, 2022. "A Review of the Emulsification Method for Alternative Fuels Used in Diesel Engines," Energies, MDPI, vol. 15(24), pages 1-26, December.
    9. Singh, Paramvir & Varun, & Chauhan, S.R. & Kumar, Niraj, 2016. "A review on methodology for complete elimination of diesel from CI engines using mixed feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1110-1125.
    10. Arbab, M.I. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Imtenan, S. & Sajjad, H., 2013. "Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 133-147.
    11. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    12. Shamsul, N.S. & Kamarudin, S.K. & Rahman, N.A., 2017. "Conversion of bio-oil to bio gasoline via pyrolysis and hydrothermal: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 538-549.
    13. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    14. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    15. Bukkarapu, Kiran Raj & Krishnasamy, Anand, 2022. "A critical review on available models to predict engine fuel properties of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    16. Tsai, Wen-Tien & Lin, Chih-Chung & Yeh, Ching-Wei, 2007. "An analysis of biodiesel fuel from waste edible oil in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 838-857, June.
    17. Ambat, Indu & Srivastava, Varsha & Sillanpää, Mika, 2018. "Recent advancement in biodiesel production methodologies using various feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 356-369.
    18. Zahedi, Ali Reza & Mirnezami, Seyed Abolfazl, 2020. "Experimental analysis of biomass to biodiesel conversion using a novel renewable combined cycle system," Renewable Energy, Elsevier, vol. 162(C), pages 1177-1194.
    19. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    20. Zhao, Rui & Liu, Dong, 2022. "Temperature dependence of chemical effects of ethanol and dimethyl ether mixing on benzene and PAHs formation in ethylene counter-flow diffusion flames," Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:140:y:2019:i:c:p:203-211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.