IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v135y2019icp259-265.html
   My bibliography  Save this article

Experimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric grid

Author

Listed:
  • Mendoza Castellanos, Luis Sebastián
  • Galindo Noguera, Ana Lisbeth
  • Carrillo Caballero, Gaylord Enrique
  • De Souza, André Leandro
  • Melian Cobas, Vladimir Rafael
  • Silva Lora, Electo Eduardo
  • Venturini, Osvaldo José

Abstract

The use of solar-powered Stirling engines to convert thermal energy into electricity is a promising and renewable technological solution that can contribute to reducing dependence on fossil fuels for electricity generation. Unfortunately, the lack of experimental performance data and operating parameters for this type of technology limits its detailed characterization, difficult its modeling and design and consequently its utilization. This paper aims to validate the mathematical model of the Dish/Stirling system previously published by Mendoza et al. (2017) with the TRINUM system, installed at the Federal University of Itajubá-Brazil. For nominal conditions, the Dish/Stirling system generates an electric power of 1.00 kW at a solar irradiation of 725 W/m2 with a system overall efficiency of 17.6%. The results show that for solar irradiance values between 520 and 950 W/m2 the experimental tests and the results of the mathematical modeling do not present considerable differences, obtaining an electric power of 1089 kWe and an efficiency of 17.98%, which represents deviations in the range of 2%–12%.

Suggested Citation

  • Mendoza Castellanos, Luis Sebastián & Galindo Noguera, Ana Lisbeth & Carrillo Caballero, Gaylord Enrique & De Souza, André Leandro & Melian Cobas, Vladimir Rafael & Silva Lora, Electo Eduardo & Ventur, 2019. "Experimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric grid," Renewable Energy, Elsevier, vol. 135(C), pages 259-265.
  • Handle: RePEc:eee:renene:v:135:y:2019:i:c:p:259-265
    DOI: 10.1016/j.renene.2018.11.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118314149
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.11.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beltrán-Chacon, Ricardo & Leal-Chavez, Daniel & Sauceda, D. & Pellegrini-Cervantes, Manuel & Borunda, Mónica, 2015. "Design and analysis of a dead volume control for a solar Stirling engine with induction generator," Energy, Elsevier, vol. 93(P2), pages 2593-2603.
    2. Xiao, Gang & Yang, Tianfeng & Ni, Dong & Cen, Kefa & Ni, Mingjiang, 2017. "A model-based approach for optical performance assessment and optimization of a solar dish," Renewable Energy, Elsevier, vol. 100(C), pages 103-113.
    3. Kongtragool, Bancha & Wongwises, Somchai, 2005. "Optimum absorber temperature of a once-reflecting full conical concentrator of a low temperature differential Stirling engine," Renewable Energy, Elsevier, vol. 30(11), pages 1671-1687.
    4. Mendoza Castellanos, Luis Sebastian & Carrillo Caballero, Gaylord Enrique & Melian Cobas, Vladimir Rafael & Silva Lora, Electo Eduardo & Martinez Reyes, Arnaldo Martin, 2017. "Mathematical modeling of the geometrical sizing and thermal performance of a Dish/Stirling system for power generation," Renewable Energy, Elsevier, vol. 107(C), pages 23-35.
    5. de Melo, Conrado Augustus & Jannuzzi, Gilberto de Martino & Bajay, Sergio Valdir, 2016. "Nonconventional renewable energy governance in Brazil: Lessons to learn from the German experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 222-234.
    6. Pereira, Amaro Olimpio & Cunha da Costa, Ricardo & Costa, Cláudia do Vale & Marreco, Juliana de Moraes & La Rovere, Emílio Lèbre, 2013. "Perspectives for the expansion of new renewable energy sources in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 49-59.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Nimr, Moh’d A. & Al-Ammari, Wahib A., 2020. "A novel hybrid and interactive solar system consists of Stirling engine ̸vacuum evaporator ̸thermoelectric cooler for electricity generation and water distillation," Renewable Energy, Elsevier, vol. 153(C), pages 1053-1066.
    2. Yang Li & Binyu Xiong & Yixin Su & Jinrui Tang & Zhiwen Leng, 2019. "Particle Swarm Optimization-Based Power and Temperature Control Scheme for Grid-Connected DFIG-Based Dish-Stirling Solar-Thermal System," Energies, MDPI, vol. 12(7), pages 1-23, April.
    3. Ahmad, Lujean & Khordehgah, Navid & Malinauskaite, Jurgita & Jouhara, Hussam, 2020. "Recent advances and applications of solar photovoltaics and thermal technologies," Energy, Elsevier, vol. 207(C).
    4. Buscemi, Alessandro & Lo Brano, Valerio & Chiaruzzi, Christian & Ciulla, Giuseppina & Kalogeri, Christina, 2020. "A validated energy model of a solar dish-Stirling system considering the cleanliness of mirrors," Applied Energy, Elsevier, vol. 260(C).
    5. Yuan, Yu & Wu, Gang & Yang, Qichang & Cheng, Ruifeng & Tong, Yuxin & Zhang, Yi & Fang, Hui & Ma, Qianlei, 2021. "Experimental and analytical optical-thermal performance of evacuated cylindrical tube receiver for solar dish collector," Energy, Elsevier, vol. 234(C).
    6. Li, Xueling & Li, Renfu & Chang, Huawei & Zeng, Lijian & Xi, Zhaojun & Li, Yichao, 2022. "Numerical simulation of a cavity receiver enhanced with transparent aerogel for parabolic dish solar power generation," Energy, Elsevier, vol. 246(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buscemi, Alessandro & Lo Brano, Valerio & Chiaruzzi, Christian & Ciulla, Giuseppina & Kalogeri, Christina, 2020. "A validated energy model of a solar dish-Stirling system considering the cleanliness of mirrors," Applied Energy, Elsevier, vol. 260(C).
    2. Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2019. "Assessing the effect of transmission constraints on wind power expansion in northeast Brazil," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    3. Mendoza Castellanos, Luis Sebastian & Carrillo Caballero, Gaylord Enrique & Melian Cobas, Vladimir Rafael & Silva Lora, Electo Eduardo & Martinez Reyes, Arnaldo Martin, 2017. "Mathematical modeling of the geometrical sizing and thermal performance of a Dish/Stirling system for power generation," Renewable Energy, Elsevier, vol. 107(C), pages 23-35.
    4. Carrillo Caballero, Gaylord Enrique & Mendoza, Luis Sebastian & Martinez, Arnaldo Martin & Silva, Electo Eduardo & Melian, Vladimir Rafael & Venturini, Osvaldo José & del Olmo, Oscar Almazán, 2017. "Optimization of a Dish Stirling system working with DIR-type receiver using multi-objective techniques," Applied Energy, Elsevier, vol. 204(C), pages 271-286.
    5. Danish, Syed Noman & Al-Ansary, Hany & El-Leathy, Abdelrahman & Ba-Abbad, Mazen & Khan, Salah Ud-Din & Rizvi, Arslan & Orfi, Jamel & Al-Nakhli, Ahmed, 2022. "Experimental and techno-economic analysis of two innovative solar thermal receiver designs for a point focus solar Fresnel collector," Energy, Elsevier, vol. 261(PA).
    6. Gucciardi Garcez, Catherine, 2017. "Distributed electricity generation in Brazil: An analysis of policy context, design and impact," Utilities Policy, Elsevier, vol. 49(C), pages 104-115.
    7. Frate, Claudio Albuquerque & Brannstrom, Christian, 2017. "Stakeholder subjectivities regarding barriers and drivers to the introduction of utility-scale solar photovoltaic power in Brazil," Energy Policy, Elsevier, vol. 111(C), pages 346-352.
    8. Eduardo Vicente Mendoza Merch n & Mois s David Vel squez Guti rrez & Diego Armando Medina Montenegro & Jos Ricardo Nu ez Alvarez & John William Grimaldo Guerrero, 2020. "An Analysis of Electricity Generation with Renewable Resources in Germany," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 361-367.
    9. Oei, Pao-Yu & Hermann, Hauke & Herpich, Philipp & Holtemöller, Oliver & Lünenbürger, Benjamin & Schult, Christoph, 2020. "Coal phase-out in Germany – Implications and policies for affected regions," Energy, Elsevier, vol. 196(C).
    10. Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
    11. Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2020. "Benefits from energy policy synchronisation of Brazil’s North-Northeast interconnection," Renewable Energy, Elsevier, vol. 162(C), pages 427-437.
    12. Babatunde, Kazeem Alasinrin & Begum, Rawshan Ara & Said, Fathin Faizah, 2017. "Application of computable general equilibrium (CGE) to climate change mitigation policy: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 61-71.
    13. Vale, A.M. & Felix, D.G. & Fortes, M.Z. & Borba, B.S.M.C. & Dias, B.H. & Santelli, B.S., 2017. "Analysis of the economic viability of a photovoltaic generation project applied to the Brazilian housing program “Minha Casa Minha Vida”," Energy Policy, Elsevier, vol. 108(C), pages 292-298.
    14. Luiz Moreira Coelho Junior & Edvaldo Pereira Santos Júnior, 2022. "Space-Time Conglomerates Analysis of the Forest-Based Power Plants in Brazil (2000–2019)," Energies, MDPI, vol. 15(11), pages 1-12, June.
    15. Bose, A.S. & Sarkar, S., 2019. "India's e-reverse auctions (2017–2018) for allocating renewable energy capacity: An evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 762-774.
    16. Schmidt, Johannes & Cancella, Rafael & Pereira, Amaro O., 2016. "An optimal mix of solar PV, wind and hydro power for a low-carbon electricity supply in Brazil," Renewable Energy, Elsevier, vol. 85(C), pages 137-147.
    17. Sun, Lulening & Zong, Chenggang & Yu, Liang & Huang, Weidong, 2019. "Evaluation of solar brightness distribution models for performance simulation and optimization of solar dish," Energy, Elsevier, vol. 180(C), pages 192-205.
    18. Aquila, Giancarlo & Nakamura, Wilson Toshiro & Junior, Paulo Rotella & Souza Rocha, Luiz Celio & de Oliveira Pamplona, Edson, 2021. "Perspectives under uncertainties and risk in wind farms investments based on Omega-LCOE approach: An analysis in São Paulo state, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    19. Gaigalis, Vygandas & Markevicius, Antanas & Skema, Romualdas & Savickas, Juozas, 2015. "Sustainable energy strategy of Lithuanian Ignalina Nuclear Power Plant region for 2012–2035 as a chance for regional development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1680-1696.
    20. Bianchini, Augusto & Guzzini, Alessandro & Pellegrini, Marco & Saccani, Cesare, 2019. "Performance assessment of a solar parabolic dish for domestic use based on experimental measurements," Renewable Energy, Elsevier, vol. 133(C), pages 382-392.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:135:y:2019:i:c:p:259-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.