IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v115y2018icp474-488.html
   My bibliography  Save this article

Vinasse concentration and juice evaporation system integrated to the conventional ethanol production process from sugarcane – Heat integration and impacts in cogeneration system

Author

Listed:
  • Cortes-Rodríguez, Edgar Fernando
  • Fukushima, Nilton Asao
  • Palacios-Bereche, Reynaldo
  • Ensinas, Adriano V.
  • Nebra, Silvia A.

Abstract

In the ethanol production process one of the most polluting residues is the vinasse, which is the bottom product of distillation column. Vinasse is produced in the range of 10–15 L per litre of ethanol, and is currently used to irrigate sugarcane fields because of the presence of macronutrients (N, P, K) in its composition. However, because of the large amount produced, its disposition in sugarcane fields involves high transport costs and does not allow an adequate application, thus causing damage to soil and groundwater due to its high content of organic components. In this context, vinasse concentration with multiple-effect evaporator systems not only allows to reduce significantly its volume through the increase of its initial solids concentration, that is generally between 2 and 5%, which reduces the costs of disposal; but also allows to consider alternative ways of energetic usages, for instance, its incineration or anaerobic biodigestion. Thus, the aim of this study is to accomplish an energy evaluation of the heat integration of a juice evaporation system and a vinasse concentration system in the conventional ethanol production process by analysing three different configurations of multiple-effect evaporator systems. The energy and mass balances were solved using the EES® software while heat integration, using the Pinch Method, was applied in order to minimize the utility consumption. A simulation of the cogeneration system was also performed in order to evaluate bagasse and electricity surplus. Two configurations for the cogeneration system were studied: i) using back-pressure steam turbines and ii) using condensing-extracting steam turbines. Additionally, an economic assessment was performed in order to estimate the capital and operating costs, aiming to identify the most appropriate configuration. The results show that it is necessary to project the integration of these concentration systems taking into account the overall process. Furthermore results show that an appropriate integration of evaporation systems (Case2) could achieve steam consumption at the range of 345 kg/t cane and electricity surplus for sale of 91 kWh/t cane.

Suggested Citation

  • Cortes-Rodríguez, Edgar Fernando & Fukushima, Nilton Asao & Palacios-Bereche, Reynaldo & Ensinas, Adriano V. & Nebra, Silvia A., 2018. "Vinasse concentration and juice evaporation system integrated to the conventional ethanol production process from sugarcane – Heat integration and impacts in cogeneration system," Renewable Energy, Elsevier, vol. 115(C), pages 474-488.
  • Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:474-488
    DOI: 10.1016/j.renene.2017.08.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117307632
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.08.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kravanja, Philipp & Modarresi, Ala & Friedl, Anton, 2013. "Heat integration of biochemical ethanol production from straw – A case study," Applied Energy, Elsevier, vol. 102(C), pages 32-43.
    2. Gupta, Anubhuti & Verma, Jay Prakash, 2015. "Sustainable bio-ethanol production from agro-residues: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 550-567.
    3. Rašković, P. & Anastasovski, A. & Markovska, Lj. & Meško, V., 2010. "Process integration in bioprocess indystry: waste heat recovery in yeast and ethyl alcohol plant," Energy, Elsevier, vol. 35(2), pages 704-717.
    4. Costa, Caliane Bastos Borba & Potrich, Erich & Cruz, Antonio José Gonçalves, 2016. "Multiobjective optimization of a sugarcane biorefinery involving process and environmental aspects," Renewable Energy, Elsevier, vol. 96(PB), pages 1142-1152.
    5. Palacios-Bereche, Reynaldo & Ensinas, Adriano V. & Modesto, Marcelo & Nebra, Silvia A., 2015. "Double-effect distillation and thermal integration applied to the ethanol production process," Energy, Elsevier, vol. 82(C), pages 512-523.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Botshekan, Maryam & Moheb, Ahmad & Vatankhah, Fatemeh & Karimi, Keikhosro & Shafiei, Marzieh, 2022. "Energy saving alternatives for renewable ethanol production with the focus on separation/purification units: A techno-economic analysis," Energy, Elsevier, vol. 239(PE).
    2. Nakashima, R.N. & de Oliveira Junior, S., 2020. "Comparative exergy assessment of vinasse disposal alternatives: Concentration, anaerobic digestion and fertirrigation," Renewable Energy, Elsevier, vol. 147(P1), pages 1969-1978.
    3. Palacios-Bereche, Milagros Cecilia & Palacios-Bereche, Reynaldo & Nebra, Silvia Azucena, 2020. "Comparison through energy, exergy and economic analyses of two alternatives for the energy exploitation of vinasse," Energy, Elsevier, vol. 197(C).
    4. Hidalgo, D. & Martín-Marroquín, J.M. & Corona, F., 2019. "A multi-waste management concept as a basis towards a circular economy model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 481-489.
    5. Aarón Montiel-Rosales & Nayeli Montalvo-Romero & Luis Enrique García-Santamaría & Luis Carlos Sandoval-Herazo & Horacio Bautista-Santos & Gregorio Fernández-Lambert, 2022. "Post-Industrial Use of Sugarcane Ethanol Vinasse: A Systematic Review," Sustainability, MDPI, vol. 14(18), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Shengdong & Huang, Wenjing & Huang, Wangxiang & Wang, Ke & Chen, Qiming & Wu, Yuanxin, 2015. "Pretreatment of rice straw for ethanol production by a two-step process using dilute sulfuric acid and sulfomethylation reagent," Applied Energy, Elsevier, vol. 154(C), pages 190-196.
    2. You, Xinqiang & Rodriguez-Donis, Ivonne & Gerbaud, Vincent, 2016. "Reducing process cost and CO2 emissions for extractive distillation by double-effect heat integration and mechanical heat pump," Applied Energy, Elsevier, vol. 166(C), pages 128-140.
    3. Andrea Patané & Giorgio Jansen & Piero Conca & Giovanni Carapezza & Jole Costanza & Giuseppe Nicosia, 2019. "Multi-objective optimization of genome-scale metabolic models: the case of ethanol production," Annals of Operations Research, Springer, vol. 276(1), pages 211-227, May.
    4. Taner, Tolga & Sivrioglu, Mecit, 2015. "Energy–exergy analysis and optimisation of a model sugar factory in Turkey," Energy, Elsevier, vol. 93(P1), pages 641-654.
    5. Palacios-Bereche, M.C. & Palacios-Bereche, R. & Ensinas, A.V. & Gallego, A. Garrido & Modesto, Marcelo & Nebra, S.A., 2022. "Brazilian sugar cane industry – A survey on future improvements in the process energy management," Energy, Elsevier, vol. 259(C).
    6. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    7. Nimmanterdwong, Prathana & Chalermsinsuwan, Benjapon & Piumsomboon, Pornpote, 2023. "Optimizing utilization pathways for biomass to chemicals and energy by integrating emergy analysis and particle swarm optimization (PSO)," Renewable Energy, Elsevier, vol. 202(C), pages 1448-1459.
    8. Leon, Juan A. & Palacios-Bereche, Reynaldo & Nebra, Silvia A., 2016. "Batch pervaporative fermentation with coupled membrane and its influence on energy consumption in permeate recovery and distillation stage," Energy, Elsevier, vol. 109(C), pages 77-91.
    9. Katia A. Figueroa-Rodríguez & Francisco Hernández-Rosas & Benjamín Figueroa-Sandoval & Joel Velasco-Velasco & Noé Aguilar Rivera, 2019. "What Has Been the Focus of Sugarcane Research? A Bibliometric Overview," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    10. Rafael Robina Ramírez & Pedro R. Palos-Sánchez, 2018. "Environmental Firms’ Better Attitude towards Nature in the Context of Corporate Compliance," Sustainability, MDPI, vol. 10(9), pages 1-21, September.
    11. Panchal, Tirth M. & Patel, Ankit & Chauhan, D.D. & Thomas, Merlin & Patel, Jigar V., 2017. "A methodological review on bio-lubricants from vegetable oil based resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 65-70.
    12. Shijia Zhang & Zhichao Wang & Jiong Shen & Xuantong Chen & Juan Zhang, 2023. "Isolation of an Acidophilic Cellulolytic Bacterial Strain and Its Cellulase Production Characteristics," Agriculture, MDPI, vol. 13(7), pages 1-19, June.
    13. Hegely, Laszlo & Lang, Peter, 2020. "Reduction of the energy demand of a second-generation bioethanol plant by heat integration and vapour recompression between different columns," Energy, Elsevier, vol. 208(C).
    14. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    15. Shi, Pengyuan & Zhang, Qingjun & Zeng, Aiwu & Ma, Youguang & Yuan, Xigang, 2020. "Eco-efficient vapor recompression-assisted pressure-swing distillation process for the separation of a maximum-boiling azeotrope," Energy, Elsevier, vol. 196(C).
    16. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
    17. Chen, Hongzhang & Fu, Xiaoguo, 2016. "Industrial technologies for bioethanol production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 468-478.
    18. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    19. Bahlouli, Keyvan & Khoshbakhti Saray, Rahim, 2016. "Energetic and exergetic analyses of a new energy system for heating and power production purposes," Energy, Elsevier, vol. 106(C), pages 390-399.
    20. Kyriakou, Maria & Patsalou, Maria & Xiaris, Nikolas & Tsevis, Athanasios & Koutsokeras, Loukas & Constantinides, Georgios & Koutinas, Michalis, 2020. "Enhancing bioproduction and thermotolerance in Saccharomyces cerevisiae via cell immobilization on biochar: Application in a citrus peel waste biorefinery," Renewable Energy, Elsevier, vol. 155(C), pages 53-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:115:y:2018:i:c:p:474-488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.